Skip to main content
Log in

Reproductive structure and function in CretaceousChloranthaceae

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Fossil chloranthoid androecia,Chloranthistemon endressii gen. et spec. nov. are described from the Upper Cretaceous (Upper Santonian or Lower Campanian) of Scania, southern Sweden. They are three-lobed and dorsiventrally flattened with all pollen sacs borne laterally and inclined toward the presumed adaxial surface. The central lobe bears two pairs of pollen sacs, the lateral lobes a single pair each. The morphology, anatomy and valvate dehiscence of the fossil androecia is very similar to that seen in extant species ofChloranthus andSarcandra, but the in situ pollen differs from that of all extantChloranthaceae in being spiraperturate. A single chloranthoid androecium from the Lower Cretaceous (Upper Albian) of Maryland, North America has a more generalized structure thanChloranthistemon endressii. It consists of three stamens that are fused at the base, and each stamen bears two pairs of oppositely positioned pollen sacs. Combined with anatomical information from recentChloranthus the Lower Cretaceous specimen suggests that the androecium in the living genus has arisen by fusion and other modifications of three separate stamens each with a normal complement of four pollen sacs. The structure of both the Upper and Lower Cretaceous androecia suggest that these fossilChloranthaceae were insectpollinated. Macrofossil evidence combined with information from dispersed pollen indicates that theChloranthaceae diversified early in angiosperm fossil history and were an important component of Mid-Cretaceous plant communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brenner, G. J., 1963: The spores and pollen of the Potomac Group of Maryland. — Md. Dept. Geol. Mines Water Resour. Bull.27: 1–215.

    Google Scholar 

  • Burger, W., 1977: ThePiperales and the monocots. Alternate hypotheses for the origin of monocotyledonous flowers. — Bot. Rev. (Lancaster)43: 345–393.

    Google Scholar 

  • Carlquist, S., 1987: Presence of vessels in wood ofSarcandra (Chloranthaceae): Comments on vessel origins in angiosperms. — Amer. J. Bot.74: 1765–1771.

    Google Scholar 

  • Couper, R. A., 1958: British Mesozoic microspores and pollen grains. — Palaeontographica Abt. B, Palaeophytol.103: 75–119.

    Google Scholar 

  • Crane, P. R., 1987: Vegetational consequences of the angiosperm diversification. — InFriis, E. M., Chaloner, W. G., Crane, P. R., (Eds.): The origins of angiosperms and their biological consequences, pp. 107–144. — Cambridge: Cambridge University Press.

    Google Scholar 

  • —, 1989: Paleobotanical evidence on the early radiation of nonmagnoliid dicotyledons. — Pl. Syst. Evol.162: 165–191.

    Google Scholar 

  • —, 1984:Lesqueria: An early angiosperm fruiting axis from the Mid-Cretaceous. — Ann. Missouri Bot. Gard.71: 384–402.

    Google Scholar 

  • —, 1986: Lower Cretaceous angiosperm flowers: fossil evidence of early radiation of Dicotyledons. — Science232: 852–854.

    Google Scholar 

  • D'Arcy, W. G., Liesner, R. L., 1981:Hedyosmum (Chloranthaceae) in Panama. — Syst. Bot.6: 74–86.

    Google Scholar 

  • Dettman, M. E., 1973: Angiospermous pollen from Albian to Turonian sediments of eastern Australia. — Geol. Soc. Australia, Spec. Publ.4: 3–34.

    Google Scholar 

  • Dilcher, D. L., Crane, P. R., 1984:Archaeanthus: an early angiosperm from the Cenomanian of the Western Interior of North America. — Ann. Missouri Bot. Gard.71: 351–383.

    Google Scholar 

  • Doyle, J. A., 1969: Cretaceous angiosperm pollen of the Atlantic coastal plain and its evolutionary significance. — J. Arnold Arbor.50: 1–35.

    Google Scholar 

  • —, 1976: Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. — InBeck, C. B., (Ed.): Origin and early evolution of angiosperms, pp. 139–206. — New York: Columbia University Press.

    Google Scholar 

  • —, 1977: Angiosperm pollen zonation of the continental Cretaceous of the Atlantic Coastal Plain and its application to deep wells in the Salisbury Embayment. — Palynology1: 43–78.

    Google Scholar 

  • Endress, P. K., 1986a: Reproductive structures and phylogenetic significance of extant primitive angiosperms. — Pl. Syst. Evol.152: 1–28.

    Google Scholar 

  • —, 1986b: Floral structure, systematics, and phylogeny inTrochodendrales. — Ann. Missouri Bot. Gard.73: 297–324.

    Google Scholar 

  • —, 1987: TheChloranthaceae: reproductive structures and phylogenetic position. — Bot. Jahrb. Syst.109: 153–226.

    Google Scholar 

  • Friis, E. M., 1984: Preliminary report of Upper Cretaceous angiosperm reproductive organs from Sweden. — Ann. Missouri Bot. Gard.71: 403–418.

    Google Scholar 

  • —, 1985: Structure and function in Late Cretaceous angiosperm flowers. — Biol. Skr.25: 1–37.

    Google Scholar 

  • —, 1986: Floral evidence for Cretaceous chloranthoid angiosperms. — Nature320: 163–164.

    Google Scholar 

  • —, 1987: Time of appearance of floral features. — InFriis, E. M., Chaloner, W. G., Crane, P. R., (Eds.): The origins of angiosperms and their biological consequences, pp. 145–179. — Cambridge: Cambridge University Press.

    Google Scholar 

  • —, 1982:Scandianthus gen. nov., angiosperm flowers of saxifragalean affinity from the Upper Cretaceous of southern Sweden. — Ann. Bot.50: 569–583.

    Google Scholar 

  • Furness, C. A., 1986: A review of spiraperaturate pollen. — Pollen & Spores27: 307–319.

    Google Scholar 

  • Hedlund, R. W., Norris, G., 1968: Spores and pollen grains from Fredericksburgian (Albian) strata, Marshall County, Oklahoma. — Pollen & Spores10: 129–159.

    Google Scholar 

  • Hickey, L. J., 1984: Part 1, Northeast of Washington, D.C., to Brooke, Virginia. — InFredericksen, N. O., Krafft, K., (Eds.): Cretaceous and Tertiary stratigraphy, paleontology and structure, South Western Maryland and Northeastern Virginia, pp. 193–209. — Reston, U.S. Geol. Surv.

    Google Scholar 

  • —, 1977: Early Cretaceous fossil evidence for angiosperm evolution. — Bot. Rev. (Lancaster)43: 2–104.

    Google Scholar 

  • Hughes, N. F., Drewry, C. E., Laing, J. F., 1979: Barremian earliest angiosperm pollen. — Palaeontol.22: 513–535.

    Google Scholar 

  • —, 1987: Records of angiospermid pollen entry into the English Early Cretaceous succession. — Rev. Palaeobot. Palynol.50: 255–272.

    Google Scholar 

  • Jérémie, J., 1980: Notes sur le genreAscarina (Chloranthaceae) en Nouvelle-Calédonie et à Madagascar. — Adansonia, ser. 2,20: 273–285.

    Google Scholar 

  • Kemp, E. M., 1968: Probable angiosperm pollen from British Barremian to Albian strata. — Palaeontology11: 421–434.

    Google Scholar 

  • Kuprianova, L. A., 1981: Palynological data on the familyChloranthaceae, its relationships and the history of distribution. — Bot. Ž. (Moscow, Leningrad)66: 3–15.

    Google Scholar 

  • Maekawa, F., 1970: Notes on the stamens ofChloranthus japonicus. — J. Japan. Bot.45: 289–294.

    Google Scholar 

  • —, 1971: Further notes on the stamens ofChloranthus japonicus. — J. Japan. Bot.46: 198.

    Google Scholar 

  • Mildenhall, D. C., 1978:Cranwellia costata n. sp. andPadosporites erugatus n. sp. from middle Pliocene (?early Pleistocene) sediments, South Island, New Zealand. — J. Roy. Soc. New Zealand8: 253–274.

    Google Scholar 

  • Mörner, N. A., 1983: The Santonian/Campanian boundary; Palaeomagnetism, sea level changes, biostratigraphy and sedimentology in SE. Sweden. — Subcommission on Cretaceous stratigraphy, symposium on Cretaceous stage boundaries. Abstr. 128–131.

  • Muller, J., 1981: Fossil pollen records of extant angiosperms. — Bot. Rev. (Lancaster)47: 1–142.

    Google Scholar 

  • Smith, A. C., 1976: Studies of Pacific island plants, 33. The genusAscarina (Chloranthaceae) in the Southern Pacific. — J. Arnold Arbor.57: 405–425.

    Google Scholar 

  • Swamy, B. G. L., 1953a: The morphology and relationships of theChloranthaceae. — J. Arnold Arbor.34: 375–411.

    Google Scholar 

  • —, 1953b: A taxonomic revision of the genusAscarina Forst. — Proc. Natl. Inst. Sci. India19: 371–388.

    Google Scholar 

  • —, 1950:Sarcandra a vesselless genus of theChloranthaceae. — J. Arnold Arbor.31: 117–129.

    Google Scholar 

  • Upchurch, G. R., 1984a: Cuticle evolution in Early Cretaceous angiosperms from the Potomac Group of Virginia and Maryland. — Ann. Missouri Bot. Gard.71: 522–550.

    Google Scholar 

  • —, 1984b: Cuticular anatomy of angiosperm leaves from the Lower Cretaceous Potomac Group. — Amer. J. Bot.71: 192–202.

    Google Scholar 

  • Van Campo, M., 1976: Patterns of pollen morphological variation within taxa. — InFerguson, J. K., Muller, J., (Eds.): The evolutionary significance of the exine, pp. 125–138. — London: Academic Press.

    Google Scholar 

  • Verdecourt, B., 1986:Chloranthaceae. — InSteenis, C. G. G. J. van, (Ed.): Flora Malesiana, Ser. 1,10 (2), pp. 123–144. — Dordrecht: Nijhoff.

    Google Scholar 

  • Walker, J. W., Walker, A. G., 1984: Ultrastructure of Lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. — Ann. Missouri Bot. Gard.71: 464–521.

    Google Scholar 

  • —, 1983: Winteraceous pollen in the Lower Cretaceous of Israel: early evidence of a magnolialean angiosperm family. — Science220: 1273–1275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crane, P.R., Friis, E.M. & Pedersen, K.R. Reproductive structure and function in CretaceousChloranthaceae . Pl Syst Evol 165, 211–226 (1989). https://doi.org/10.1007/BF00936003

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00936003

Key words

Navigation