Skip to main content
Log in

Zinc and copper effects on metal-tolerant and non-tolerant clones ofAgrostis tenuis (Poaceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The toxicity of various Cu and Zn concentrations, as well as their mutual influence upon tolerant and non-tolerant clones ofAgrostis tenuis originating from soils of different metal content has been studied. Specific resistance has been clearly established. Co-existence of toxic metals causes an increase in toxicity. Uptake of metals (Cu and Zn) obviously occurs rather independently, and the toxic activity of the one is not affected competitively by the presence of the other. Above normal concentrations of Cu and Zn negatively affect cell division and growth in roots of non-tolerant genotypes. There is less ability to store metals than in tolerant genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, W. R., 1971: Copper tolerance in some Californian populations of the monkey flower,Mimulus guttatus. — Proc. R. Soc.B 177, 177–196.

    Google Scholar 

  • Antonovics, J., 1966: The Genetics and Evolution of Differences Between Closely Adjacent Plant Populations With Special References to Heavy Metal Tolerance. — Ph. D. thesis, Univ. of Wales.

  • —, 1971: Heavy metal tolerance in plants. — Adv. Ecol. Res.7, 1–85.

    Google Scholar 

  • Bowen, J. E., 1969: Absorption of copper, zinc and manganese by sugarcane leaf tissue. — Pl. Physiol.44, 255–261.

    Google Scholar 

  • Bradshaw, A. D., 1952: Populations ofAgrostis tenuis resistant to lead and zinc poisoning. — Nature169, 1098.

    PubMed  Google Scholar 

  • —, 1971: Plant evolution in extreme environments. — InCreed, R., (Ed.): Ecological Genetics and Evolution, 20–50. — Oxford: Blackwell.

    Google Scholar 

  • —, 1976: Population and Evolution. InMansfield, T. A., (Ed.): Experimental Studies on the Biological Effects of Environmental Pollutants. — Soc. Exp. Biology, Seminar Ser.1. — Cambridge: Univ. Press.

    Google Scholar 

  • Bröker, W., 1963: Genetisch-physiologische Untersuchungen über die Zinkverträglichkeit vonSilene inflata Sm. — Flora,B 153, 122–156.

    Google Scholar 

  • Chaudhry, F. M., Loneragan, J. F., 1970: Effects of nitrogen, copper, and zinc fertilizers on the copper and zinc nutrition of wheat plants. — Australian J. Agr. Research21, 865–879.

    Google Scholar 

  • —, 1972: Zinc absorption by wheat seedling: II. Effects of hydrogen ions and micronutrient cations. — Soil Sci. Soc. Am. Proc.36, 327–331.

    Google Scholar 

  • —, 1973: Zinc-copper antagonism in the nutrition of rice (Oriza sativa L.). — Plant Soil38, 573–580.

    Google Scholar 

  • Clarkson, D. T., 1969: Metabolic aspects of aluminium toxicity and some possible mechanisms for resistance. InRorison, I. H., (Ed.): Ecological Aspects of the Mineral Nutrition of Plants. — Oxford: Blackwell.

    Google Scholar 

  • Cole, M. M., Provan, D. M. J., Tooms, J. S., 1968: Geobotany, biogeochemistry and geochemistry in mineral exploration in the Bulman-Waimura Springs area, Northern Teritory, Australia. — Trans. Instn. Min. Metall.77, 81–104.

    Google Scholar 

  • Ernst, W., 1969: Zur Physiologie der Schwermetallpflanzen-Subzelluläre Speicherungsorte des Zinks. — Ber. Deutsch. Bot. Ges.82, 161–164.

    Google Scholar 

  • —, 1975: Physiologische Grundlagen der Schwermetallresistenz. — Forschungsber. Landes Nordrhein-Westfalen Nr.2496, 1–38. Opladen.

    Google Scholar 

  • Howard-Williams, C., 1969: The ecology ofBecium homblei Duvign. & Plancke. — M. Phil. Thesis, University of London.

  • Jefferies, R. L., Laycock, D., Stewart, G. R., Sims, A. P., 1969: The properties of mechanisms involved in the uptake and utilisation of calcium and potassium by plants in relation to an understanding of plant distribution. — InRorison, I. H. (Ed.): Brit. Ecol. Soc. Symp.9, 281–308.

    Google Scholar 

  • Jowett, D., 1958: Populations ofAgrostis spp. tolerant of heavy metals. — Nature182, 816–817.

    Google Scholar 

  • —, 1964: Populations studies on lead tolerantAgrostis tenuis — Evolution18, 70–80.

    Google Scholar 

  • Kalow, W., Davies, R. O., 1958: The activity of various esterase inhibitors towards a typical human serum cholinesterase. — Biochem. Pharmac.1, 183–192.

    Google Scholar 

  • Karataglis, S., 1978: Studies on heavy metal tolerance in populations ofAnthoxanthum odoratum. — Ber. Deutsch. Bot. Ges.91, 205–216.

    Google Scholar 

  • Lawrence, A. W., McCarty, P. L., 1965: The role of sulphide in preventing heavy metal toxicity in anaerobic treatment. — J. Wat. Pollut. Control Fed.37, 392–406.

    Google Scholar 

  • Mathys, W., 1975: Enzymes of heavy-metal-resistant and non-tolerant populations ofSilene cucubalus and their interaction with some heavy metalsin vitro andin vivo. — Physiol. Plant.33, 161–165.

    Google Scholar 

  • —, 1977: The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. — Physiol. Plant.40, 130–136.

    Google Scholar 

  • McNeilly, T., Bradshaw, A. D., 1968: Evolutionary processes in populations of copper tolerantAgrostis tenuis Sibth. — Evolution22, 108–118.

    Google Scholar 

  • Ohki, K., 1976: Effects of zinc nutrition on photosynthesis and carbonic anhydrase activity in cotton. — Physiol. Plant.38, 300–305.

    Google Scholar 

  • Peterson, P. J., 1969: The distribution of zinc-65 inAgrostis tenuis Sibth. andAgrostis stolonifera L. tissues. — J. Exp. Bot.20, 863–875.

    Google Scholar 

  • Prat, S., 1934: Die Erblichkeit der Resistenz gegen Kupfer. — Ber. Deutsch. Bot. Ges.52, 65–67.

    Google Scholar 

  • Reilly, C., 1972: Amino acids and amino acid copper complexes in water-soluble extracts of copper-tolerant and non-tolerantBecium homblei. — Z. Pflanzenphysiol.66, 294–296.

    Google Scholar 

  • Schwanitz, F., Hahn, H., 1954a: Genetischentwicklungsphysiologische Untersuchungen an Galmeipflanzen. I. Pflanzengröße und Resistenz gegen Zinksulfat beiViola lutea Hudson,Alsine verna L., undSilene inflata Sm. — Z. Bot.42, 179–190.

    Google Scholar 

  • —, 1954b: Genetischentwicklungsphysiologische Untersuchungen an Galmeipflanzen. II. Über Galmeibiotypen beiLinum catharticum L.,Campanula rotundifolia L.,Plantago lanceolata L., undRumex acetosa L., — Z. Bot.42, 459–471.

    Google Scholar 

  • Turner, R. G., 1969: Heavy metal tolerance in plants. InRorison, I. H., (Ed.): Ecological Aspects of the Mineral Nutrition of Plants, p. 399. — Oxford, Edingburgh: Blackwell.

    Google Scholar 

  • —, 1971: The accumulation of Zn65 by root homogenates of zinctolerant and non-tolerant clones ofAgrostis tenuis Sibth. — New Phytol.70, 539–545.

    Google Scholar 

  • —, 1972: The accumulation of zinc by subcellular fractions of roots ofAgrostis tenuis Sibth. in relation to zinc tolerance. — New Phytol.71, 671–676.

    Google Scholar 

  • Urquhart, G., 1971: Genetics of lead tolerance inFestuca ovina L., — Heredity26, 19–33.

    Google Scholar 

  • Vallee, B. L., Ulmer, D. D., 1972: Biochemical effects of mercury, cadmium, and lead. — Annu. Rev. Biochem.41, 91–128.

    PubMed  Google Scholar 

  • Wainwright, S. J., Woolhouse, H. W., 1973: Physiological mechanisms of heavy metal tolerance in plants. — InChadwick, M. J. & Goodman, G. T., (Ed.): British Ecological Society15 th Symposium.

  • Wilkins, D. A., 1960: The measurement and genetic analysis of lead-tolerance inFestuca ovina. — Rep. Scott. Pl. Breed. Stn., 85–98.

  • Woolhouse, H. W., 1969: Differences in the properties of the acid phosphatases of plant roots and their significance in the evolution of edaphic ecotypes. InRorison, I. H. (Ed.): Ecological Aspects of the Mineral Nutrition of Plants. — Oxford: Blackwell.

    Google Scholar 

  • Wu, L., Thurman, D. A., Bradshaw, A. D., 1975: The uptake of copper and its effect upon respiratory processes of roots of copper-tolerant and non-tolerant clones ofAgrostis stolonifera. — New Phytol.75, 225–229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karataglis, S.S. Zinc and copper effects on metal-tolerant and non-tolerant clones ofAgrostis tenuis (Poaceae). Pl Syst Evol 134, 173–182 (1980). https://doi.org/10.1007/BF00986797

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00986797

Key words

Navigation