Skip to main content
Log in

An internal variable model for the creep of rocksalt

  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Summary

The creep strain rate\(\dot \varepsilon \) of rocksalt, like that of other ductile crystalline materials, can be described by a power law equation of the type\(\dot \varepsilon \) α(σ α )n, where the active stressσ α is the difference between the total deviatoric applied stress σ and an internal stressσ i . In this paper, the origin and the nature of this internal stress, which develops during inelastic deformation of the material, are discussed. It is shown that this internal stress can serve as an internal (or state) variable in the constitutive model of rocksalt, which reflects the microstructure evolution of the material under the competitive action of hardening and recovery mechanisms.

An analysis of experimental data, both our own and those taken from the literature, demonstrates that such a law is able to correctly reproduce rocksalt creep test results in the steady-state domain. The proposed model is in accordance with the macroscopic and microscopic behavior of salt, and with direct measurements of the internal stresses made by others on this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Argon, A. S., Takeuchi, S. (1981): Internal stress in power-law creep. Acta Metal 29, 1877–1884.

    Google Scholar 

  • Ashby, M. F. (1983): Mechanisms of deformation and fracture. In: Advances in applied mechanics Vol. 23. Academic Press, New York, 117–177.

    Google Scholar 

  • Aubertin, M. (1989): Developpement d'un modèle viscoplastique unifié avec variables internes pour le comportement rhéologique du sel gemme. Ph. D. Thesis, École Polytechnique de Montréal, 574 pp.

  • Aubertin, M., Gill, D. E., Ladanyi, B. (1987a): Le, comportement rhéologique du sel: Revue Bioliographie — tome I: Essais en laboratoire et modélisation empirique. Rapport EPM/RT-87/31, École Polytechnique de Montréal, 204 pp.

  • Aubertin, M., Gill, D. E., Ladanyi, B. (1987b): Le comportement rhéologique du sel: Revue Bibliographique — tome II: Mécanismes de déformation, modélisation physique, rupture, essais en place et comportement in situ. Rapport EPM/RT-87/32, École Polytechnique de Montréal, 221 pp.

  • Aubertin, M., Gill, D. E., Ladanyi, B. (1987c): An internal state variable approach for the study of creep of rocksalt. Invited Presentation, Workshop, Constitutive Laws for Salt Rocks, 6th Cong. ISRM.

  • Aubertin, M., Gill, D. E., Ladanyi, B. (1989): The active stress concept and the creep of rock salt. Proc., 6th Cong. IRSM 3, Balkema, Rotterdam, 1501–1503.

    Google Scholar 

  • Aubertin, M., Gill, D. E., Ladanyi, B. (1990a): A novel unified viscoplastic model for the inelastic flow of alkali halides. Mechanics of Materials (to be published).

  • Aubertin, M., Gill, D. E., Ladanyi, B. (1990b): Un modèle viscoplastique unifié pour la prévision du comportement d'excavations en roches tendres. 43rd Canadian Geotechnical Conference (to be published).

  • Bammann, D. J., Krieg, R. D. (1987): Summary and critique. Unified constitutive equations for creep and plasticity. Elsevier Appl. Sci., Amsterdam, 303–336.

    Google Scholar 

  • Blais, M. (1988): Effet de la redistribution de contraintes sur la convergence des excavations souterraines dans le sel gemme. M. Sc. A. Thesis, École Polytechnique de Montréal, 251 pp.

  • Blum, W., Fleischmann, C. (1988): On the deformation mechanisms map of rock salt. Proc., 2nd Conf. Mech. Behavior of Salt, Trans. Tech. Publ., 7–22,

  • Borm, G., Haupt, M. (1988): Constitutive behavior of rock salt: power law or hyperbolic sine creep?. Numerical methods in Geomechanics. Balkema, Rotterdam, 1883–1893.

  • Boyle, J. T., Spence, J. (1983): Stress analysis for creep. Butterworths, London.

    Google Scholar 

  • Cadek, J. (1987): The back stress concept in power law creep of metals: a review. Mat. Sci. Engng. 94, 79–92.

    Google Scholar 

  • Carter, N. L., Tsenn, M. C. (1987): Flow properties of continental lithosphere. Tectonophysics 136, 27–63.

    Google Scholar 

  • Chang, T. Y., Chang, J. P., Thompson, R. L. (1985): On numerical integration and computer implementation of viscoplastic models. Nonlinear constitutive relations for high temperature application. NASA, 187–200.

  • Cornet, M., Bertrand, C., Trichet, M. F. (1988): Le fluage de Dorn et l'influence de l'énergie de faute d'empilement: Cas de Cu et Cu−Si. Res. Mechanica. 24, 47–84.

    Google Scholar 

  • Delobelle, P. (1988): Sur les lois de comportement viscoplastiques à variables internes. Rev. Phys. Appl. 23, 1–61.

    Google Scholar 

  • Derby, B., Ashby, M. F. (1987): A microstructural model for primary creep. Acta Metal. 35 (6), 1343–1353.

    Google Scholar 

  • Eggeler, G., Blum, W. (1981): Coarsening of the dislocation structure after stress reduction during creep of NaCl single crystals. Phil. Mag. A 44, 1065–1084.

    Google Scholar 

  • Evans, R. W., Harrison, G. F. (1976): The development of a universal equation for secondary creep rates in pure metals and engineering alloys. Metal Sci. (Sept. 1976), 307–313.

  • Guessous, Z., Gill, D. E., Ladanyi, B. (1987): Effect of simulated sampling disturbance on creep behaviour of rock salt. Rock Mech. Rock Engng. 20, 261–275.

    Google Scholar 

  • Haasen, P. (1985): Dislocations and the plasticity of ionic crystals. Dislocations and Properties of Real Materials. Inst. of Metals, 312–332.

  • Handin, J., Russell, J. E., Carter, N. L. (1986): Experimental deformations of rocksalt. Amer. Geophys. Un. Monogr. 36, 117–160.

    Google Scholar 

  • Hansen, F. D., Carter, N. L. (1984): Creep of Avery Island rocksalt. Proc., 1st Conf. Mech. Behavior of Salt, Trans. Tech. Pub., 53–69.

  • Hardy, H. R. (1982): Theoretical and laboratory studies relative to the design of salt caverns for the storage of natural gas. Project PR-12-71 of the Pipeline Research Committee, American Gas Association, 709 pp.

  • Heard, H. C. (1972): Steady-state flow in polycrystalline halite at pressure of 2 kilobars. Flow and Fracture of Rocks, Geophys. Monogr. Ser., Amer. Geophys. Union 16, 191–210.

    Google Scholar 

  • Heard, H. C. (1985): Experimental determination of mechanical properties. In: Preferred orientation in deformed metals and rocks. Academic Press, New York, 485–506.

    Google Scholar 

  • Heusermann, S., Lux, K.-H., Rokahr, R. (1983): The development of mathematical models from the results of laboratory tests to describe the material behavior of rock salt and its dependence on time and temperature together with calculations based on continuum mechanics using the method of finite elements. Final Report (in German). Institut für Unterirdisches Bauen, Universität Hannover, BMFT-FB-T83-218, 434 pp.

  • Hunsche, U. (1988): Measurements of creep of rock salt at small strain rates. Proc., 2nd Conf. Mech. Behavior of Salt. Trans. Tech. Pub., 187–196.

  • James, G. H., Imbrie, P. K., Hill, P. S., Allen, D. H., Haisler, W. E. (1987): An experimental comparison of several current viscoplastic constitutive models at elevated temperatures. J. Engng. Mat. Techn., ASME 109, 130–139.

    Google Scholar 

  • Kirby, S. H. (1983): Rheology of the lithosphere. Rev. Geoph. Space Phys. 21 (6), 1458–1487.

    Google Scholar 

  • Krempl, E. (1984): Viscoplasticity based on overstress. Experiment and theory. Mechanics of engineering materials. J. Wiley, New York, 369–384.

    Google Scholar 

  • Krempl, E. (1987): Models of viscoplasticity — Some comments on equilibrium (back) stress and drag stress. Acta Mech. 69, 25–42.

    Google Scholar 

  • Krieg, R. D. (1982): A unified creep-plasticity model for halite. Mechanical testing for deformation model development. ASTM STP 765, 139–147.

    Google Scholar 

  • Lajtai, E. Z., Scott Duncan, J. J. (1988): The mechanism of deformation and fracture in potash rock. Can. Geotech. J. 25, 262–278.

    Google Scholar 

  • Langdon, T. G. (1985): Dislocations and creep. Dislocations and properties of real materials. Inst. of Metals, 221–238.

  • Langer, H. (1984): The rheological behavior of rock salt. Proc., 1st Conf. Mech. Behavior of Salt, Trans. Tech. Publ., 201–240.

  • LeMay, I. (1981): Principles of mechanical metallurgy. Elsevier, Amsterdam.

    Google Scholar 

  • Lindner, E. N. (1983): A constitutive and experimental investigation of load-history influences on the creep behavior of salt. Ph. D. Thesis, University of Minnesota, 302 pp.

  • Morgan, H. S., Krieg, R. D. (1988): A comparison of unified creep-plasticity and conventional creep models for rock salt based on predictions of creep behavior measured in several in situ and bench-scale experiments. Sandia National Laboratories, Report SAND87-1867, 45 pp.

  • Mughrabi, H. (1983): Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metal. 31 (9), 1367–1379.

    Google Scholar 

  • Munson, D. E., Dawson, P. R. (1982): A work-hardening/recovery model of transient creep of salt during stress loading and unloading. Proc., 23rd U. S. Symp. Rock Mech., 299–306.

  • Murakami, S., Ohno, L. (1982): A constitutive equation of creep based on the concept of a creep hardening surface. Int. J. Solids Struct. 18 (7), 597–609.

    Google Scholar 

  • Nadgornyi, E. (1988): Dislocation dynamics and mechanical properties of crystals. In: Progress in materials science, Vol. 31. Pergamon Press, Oxford.

    Google Scholar 

  • Nicolas, A., Poirier, J. P. (1976): Crystalline plasticity and solid state flow in metamorphic rocks. J. Wiley, New York.

    Google Scholar 

  • Nix, W. D., Gibeling, J. C. (1985): Mechanism of time-dependent flow and fracture of metals. Flow and fracture at elevated temperatures. ASM Materials Science Seminar, 1–63.

  • Onat, E. T. (1981): Representation of inelastic behavior. Proc., Int. Conf. on Creep and Fractures in Engineering Materials and Structures. Pineridge Press, Swansea, 587–602.

    Google Scholar 

  • Orlova, A., Cadek, J. (1986): Dislocation structure in the high temperature creep of metals and solid solution alloys: a review. Mat. Sci. Engng. 77, 1–18.

    Google Scholar 

  • Parrish, D. K., Gangi, A. F. (1981): A nonlinear least squares technique for determining multiple-mechanism, high-temperature creep flow laws. Amer. Geophys. Union Monograph 24, 287–298.

    Google Scholar 

  • Poirier, J. P. (1985): Creep of crystals — high-temperature deformation processes in metals, ceramics and minerals. Cambridge University Press, Cambridge.

    Google Scholar 

  • Pontikis, V. (1977): Phenomenological analysis of recovery controlled transient creep supported by structural observations in single crystals of sodium chloride and silver chloride. Acta Metal. 25, 847–855.

    Google Scholar 

  • Rolnik, H. I. A. (1988): High-level waste repository in rocksalt: suitable rheological forms. Proc., 2nd Conf. Mech. Behavior of Salt, Trans. Tech. Pub., 625–643.

  • Russell, J. E. (1988): Constitutive model development for Avery Island rocksalt. Appl. Mech. Engng. Sci. Conf. Abstracts, ASME, 95–96.

  • Senseny, P. E. (1988): Creep properties of four rock salts. Proc., 2nd Conf. Mech. Behavior of Salt, Trans. Tech. Pub., 431–444.

  • Senseny, P. E., Hansen, F. D. (1987): Potential constitutive models for salt: survey of phenomenology, micromechanisms, and equations. Topical Report RSI-0284, RE/SPEC (Dec. 1987), 114 pp.

  • Smith, I. O., Northwood, D. O. (1986): Back stresses in high temperature creep of Al−Mg alloys. In: Strength of metals and alloys, ICSMA7, Vol. 1 Pergamon Press, Oxford, 779–784.

    Google Scholar 

  • Steen, M., Provost, W., Dhooge, A. (1986): Some considerations on creep tests, constant strain-rate tests and the internal stress in creep. Res. Mechanica 18, 35–50.

    Google Scholar 

  • Swearengen, J. C., Lowe, T. C., Lipkin, J. (1985): Constitutive equations for rate-dependent plasticity. Ann. Rev. Mater. Sci. 15 C, 249–270.

    Google Scholar 

  • Wawersik, W. R., Zeuch, D. H. (1984): Creep and creep modeling on three domal salts — a comprehensive update. Sandia National Laboratories, Report SAND 84-0568, 93 pp.

  • Weertman, J. (1975): High temperature creep produced by dislocation motion. Rate process in plastic deformation of materials. Amer. Soc. for Metals, 315–336.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubertin, M., Gill, D.E. & Ladanyi, B. An internal variable model for the creep of rocksalt. Rock Mech Rock Engng 24, 81–97 (1991). https://doi.org/10.1007/BF01032500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01032500

Keywords

Navigation