Skip to main content

Advertisement

Log in

The loss of immunity in directly transmitted infections modeling: Effects on the epidemiological parameters

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

When directly transmitted infectious diseases are modeled assuming an everlasting induced immunity (and constant contact rate), there are well-established formulas to deal with, which is not true if we include the loss of induced immunity. In general, the immunity induced by the disease is everlasting. We propose a model considering the loss of immunity and present methods for the estimation of two epidemiological parameters: the force of infection and the basic reproduction ratio. We also analyze the effects of the loss of immunity on these parameters. Based on these results, we conclude that reinfection can play an important role in highly vaccinated populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. M. and R. M. May (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press.

    Google Scholar 

  • Azevedo Neto, R. S., A. S. B. Silveira, D. J. Nokes, H. M. Yang, S. D. Passos, M. R. D. Cardoso and E. Massad (1994). Rubella Seroepidemiology in a Non-immunized Population of São Paulo State, Brazil. Epidemiol. Infect. 113, 161–173.

    Google Scholar 

  • Bates, D. M. and D. G. Watts (1988). Nonlinear Regression Analysis and Its Applications. New York: Wiley.

    MATH  Google Scholar 

  • Coutinho, F. A. B., E. Massad, M. N. Burattini, H. M. Yang, and R. S. Azevedo Neto (1993). Effects of vaccination programmes on transmission rates of infections and related threshold conditions for control. IMA J. Math. App. Med. Biol. 10, 187–206.

    MATH  Google Scholar 

  • Diekmann, O., K. Dietz, and J. A. P. Heesterbeek (1991). The basic reproduction ratio for sexually transmitted diseases: I. theoretical considerations. Math. Biosc. 107, 325–339.

    Article  MATH  Google Scholar 

  • Dietz, K. (1975). Transmission and control of arbovirus diseases, in D. Ludwig and K. L. Cooke (Eds), Proceedings of SIMS Conference on Epidemiology, Alta, Utah, July 8–12, 1974, Philadelphia: Society for Industrial and Applied Mathematics, pp. 104–121.

    Google Scholar 

  • Griffel, D. H. (1981). Applied Functional Analysis. New York: Wiley.

    MATH  Google Scholar 

  • Liu, W. M., H. W. Hethcote and S. A. Levin (1987). Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25, 359–380.

    Article  MathSciNet  MATH  Google Scholar 

  • Markowitz, L. E., S. R. Preblud, P. E. Fine, et al (1990). Duration of live measles vaccine-induced immunity. Pediatr. Infect. Dis. J. 9, 101–110.

    Article  Google Scholar 

  • Massad, E., M. N. Burattini, R. S. Azevedo Neto, H. M. Yang, F. A. B. Coutinho and D. M. T. Zanetta (1994). A model-based design of a vaccination strategy against rubella in a non-immunized community of São Paulo State, Brazil. Epidemiol. Infect. 112, 579–594.

    Article  Google Scholar 

  • Massad, E., R. S. Azevedo Neto, M. N. Burattini et al. (1994). Assessing the efficacy of a mixed vaccination strategy against rubella in São Paulo, Brazil. Intern. J. Epidemiol. 24, 842–850.

    Google Scholar 

  • Mathias, R. G., W. G. Meekison, T. A. Arcand, et al. (1989). The role of secondary vaccine failures in measles outbreaks. Amer. J. Public Health 79, 475–478.

    Article  Google Scholar 

  • Muench, H. (1959). Catalytic Models in Epidemiology. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Press, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Vetterling (1989). Numerical Recipes: The Art of Scientific Computing (FORTRAN Version). Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Raimundo, S. M., H. M. Yang and R. C. Bassanezi (1996). Modeling interaction between AIDS and tuberculosis: case study among women inmates, in Abstracts 3rd European Conference on Mathematics Applied to Biology and Medicine. 174.

  • Rouderfer, V., N. G. Becker and H. W. Hethcote (1994). Wanning immunity and its effects on vaccination schedules. Math. Biosc. 124, 59–82.

    Article  MATH  Google Scholar 

  • Tricomi, F. G. (1985). Integral Equations, New York: Dover.

    Google Scholar 

  • Yang, H. M. (1997). Directly transmitted infections modeling considering age-structured contact rate—part I: stochastic derivation. Theor. Pop. Biol. submitted.

  • Yang, H. M., A. S. B. Silveira and E. Massad (1996). Modeling the directly transmitted infections considering the loss of immunity, A. Stevens and W. Jäger (Eds), in Abstracts 3rd European Conference on Mathematics Applied to Biology and Medicine. 179. Heidelberg: Universität Heidelberg.

    Google Scholar 

  • Yang, H. M. and F. A. B. Coutinho (1998). Acquired immunity on a schistosomiasis transmission model—analysis of the stabilizing effects. J. Theoret. Biol., in press.

  • Yang, H. M., F. A. B. Coutinho and E. Massad (1997). Acquired immunity on a schistosomiasis transmission model—fitting the data. J. Theoret. Biol., in press.

  • Yang, H. M. (1997). Impacto da Vacinação nas Infecções de Transmissão Direta—Epidemiologia Através de Modelo Matemático (port.). Thesis. IMECC-UNICAMP.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H.M., Silveira, A.S.B. The loss of immunity in directly transmitted infections modeling: Effects on the epidemiological parameters. Bull. Math. Biol. 60, 355–372 (1998). https://doi.org/10.1006/bulm.1997.0031

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1997.0031

Keywords

Navigation