Skip to main content
Log in

Sex ratio genetics and the competitiveness of parasitic wasps

  • Behavioural Ecology
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In the first part of the paper we analyse dynamics of the genetic mechanisms responsible for maintaining biased sex ratios in host-parasitoid interactions. We begin by reviewing recent results relating to the maintenance of sibmating in haplo-diploid populations. We then investigate the evolutionary stable sex ratio in populations in which all or some of the females mate with their brothers. In particular, we derive a diallelic one-locus model for studying evolutionary stable sex ratios in partially sibmating haplo-diploid populations. In the second part of the paper we review the impact of sex ratio on host-parasitoid populations. We then analyse how the sex ratio strategy of one parasitoid species may affect its interaction with another parasitoid species competing for the same host. In particular we show that, although a female biased sex ratio may enhance the inherent competitiveness of one species, it may also destabilize the ecological interaction of the three species so that all become extinct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Arditi, R. and H. R. Akçakaya. 1990. Underestimation of mutual interference of predators.Oecologia 83, 358–361.

    Google Scholar 

  • Charnov, E. L. 1982.The Theory of Sex Allocation. Princeton, New Jersey: Princeton University Press.

    Google Scholar 

  • Clark, A. B. 1978. Sex ratio and local resource competition in a prosimian primate.Science 201, 163–165.

    Google Scholar 

  • Comins, H. N. and P. W. Wellings. 1985. Density-related parasitoid sex-ratio: influence on host-parasitoid dynamics.J. Anim. Ecol. 54, 583–603.

    Article  Google Scholar 

  • Feldman, M. W. and F. B. Christiansen. 1984. Population genetic theory of the cost of inbreeding.Am. Nat. 123, 642–653.

    Article  Google Scholar 

  • Fisher, R. A. 1930.The Genetical Theory of Natural Selection. Oxford, U.K.: Oxford University Press.

    MATH  Google Scholar 

  • Fox, L. R. and D. K. Letourneau, J. Eisenbach and S. Van Nouhuys. 1990. Parasitism rates and sex ratios of a parasitoid wasp: effects of herbivore and plant quality.Oecologia 83, 414–419.

    Google Scholar 

  • Getz, W. M. and V. Kaitala, 1989. Ecogenetic models, competition, and heteropatry.Theoret. Popul. Biol. 35, 34–58.

    Article  Google Scholar 

  • Getz, W. M., V. Kaitala and F. L. Ratnieks. 1992. Invasion dynamics and the evolutionary-stability of sibmating genes in diploid and haplodiploid populations. In review.

  • Hamilton, W. D. 1967. Extraordinary sex ratiosScience 156, 477–488.

    Google Scholar 

  • Hassell, M. P. 1978.The Dynamics of Anthropod Predator-Prey Systems. Princeton, New Jersey: Princeton University Press.

    Google Scholar 

  • Hassell, M. P. 1986. Parasitoids and population regulation. InInsect Parasitoids, J. Waage and D. Greathead (Eds), pp. 201–224. Orlando, Florida: Academic Press.

    Google Scholar 

  • Hassell, M. P., J. Waage and R. May. 1983. Variable parasitoid sex ratios and their effect on host-parasitoid dynamics.J. Anim. Ecol. 52, 889–904.

    Article  Google Scholar 

  • Hogart, W. L. and P. Diamond. 1984. Interspecific competition in larvae between entomophagous parasitoids.Am. Nat. 124, 552–560.

    Article  Google Scholar 

  • Karlin, S. and S. Lessard. 1986.Sex Ratio Evolution. Princeton, New Jersey: Princeton University Press.

    Google Scholar 

  • Mangel, M. and C. W. Clark. 1988.Dynamic Modeling in Behavioral Ecology. Princeton, New Jersey: Princeton University Press.

    Google Scholar 

  • May, R. M. 1974. Biological populations with non-overlapping generations: stable points, stable cycles, and chaos.Science 186, 645–647.

    Google Scholar 

  • May, R. M. and M. P. Hassell. 1981. The dynamics of multiparasitoid-host interactions.Am. Nat. 117, 234–261.

    Article  MathSciNet  Google Scholar 

  • May, R. M., M. P. Hassell, R. M. Anderson and D. W. Tonkyn. 1981. Density-dependence in host-parasitoid models.J. Anim. Ecol. 50, 855–865.

    Article  MathSciNet  Google Scholar 

  • Michod, R. E. and B. R. Levin. 1988.The Evolution of Sex. Sunderland, Massachusetts: Sinauer Associates.

    Google Scholar 

  • Nicholson, A. J. and V. A. Bailey. 1935. The balance of animal populations.Proc. Zool. Soc. Lond., Part 1, 551–598.

    Google Scholar 

  • Speirs, D. G., T. N. Sherratt and S. F. Hubbard. 1991. Parasitoid diets: does superparasitism pay?TREE 6(1), 22–25.

    Google Scholar 

  • Taylor, P. D. and M. G. Bulmer. 1980. Local mate competition and the sex ratio.J. Theoret. Biol. 86, 409–419.

    Article  MathSciNet  Google Scholar 

  • Uyenoyama, E. and B. O. Bengtsson. 1982. Towards a genetic theory for the evolution of the sex ratio: III. Parental and sibling control of brood investment ratio under partial sib-mating.Theoret. Popul. Biol. 22, 43–68.

    Article  MATH  MathSciNet  Google Scholar 

  • Waage, J. 1986. Family planning in parasitoids: adaptive patterns of progeny and sex allocation. In:Insect Parasitoids, J. Waage and D. Greathead (Eds). London: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaitala, V., Getz, W.M. Sex ratio genetics and the competitiveness of parasitic wasps. Bltn Mathcal Biology 54, 295–311 (1992). https://doi.org/10.1007/BF02464835

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02464835

Keywords

Navigation