Skip to main content
Log in

Gene homologs on human chromosome 15q21-q26 and a chicken microchromosome identify a new conserved segment

  • Original Contribution
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The genes for insulin-like growth factor 1 receptor (IGF1R), aggrecan (AGC1), β2-microglobulin (B2M), and an H6-related gene have been mapped to a single chicken microchromo-some by genetic linkage analysis. In addition, a second H6-related gene was mapped to chicken macrochromosome 3. The Igf1r and Agc1 loci are syntenic on mouse Chr 7, together with Hmx3, an H6-like locus. This suggests that the H6-related locus, which maps to the chicken microchromosome in this study, is the homolog of mouse Hmx3. The IGF1R, AGC1, and B2M loci are located on human Chr 15, probably in the same order as found for this chicken microchromosome. This conserved segment, however, is not entirely conserved in the mouse and is split between Chr 7 (Igf1r-Age) and 2 (B2m). This comparison also predicts that the HMX3 locus may map to the short arm of human Chr 15. The conserved segment defined by the IGF1R-AGC1-HMX3—B2M loci is approximately 21–35 Mb in length and probably covers the entire chicken microchromosome. These results suggest that a segment of human Chr 15 has been conserved as a chicken micro-chromosome. The significance of this result is discussed with reference to the evolution of the avian and mammalian genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott AM, Bueno R, Pedrini MT, Murray JM, Smith RJ (1992) Insulin-like growth factor 1 receptor gene structure. J Biol Chem 267, 10759–10763

    PubMed  CAS  Google Scholar 

  • Armstrong DG, Hogg CO(1992) The expression of a putative insulin-like growth factor—1 receptor gene in the liver of the developing chick. J Mol Endocrinol 8, 193–201

    Article  PubMed  CAS  Google Scholar 

  • Bloom SE, Delany ME, Muscarella DE(1993) Constant and variable features of avian chromosomes. In Manipulation of the Avian Genome, RJ Etches, AMV Gibbins (eds) (Orlando, FL: CRC Press Inc.) pp 39–60

    Google Scholar 

  • Budowle N, Baechtel FS(1990) Modifications to improve the effectiveness of restriction fragment length polymorphism typing. Appl Electrophor 1, 181–187

    CAS  Google Scholar 

  • Budowle B, Chakraborty R, Guisti AM, Eisenberg AJ, Allen RC (1991) Analysis of the VNTR locus DIS80 by PCR followed by high resolution PAGE. Am J Hum Genet 48, 137–144

    PubMed  CAS  Google Scholar 

  • Bumstead N, Palyga J (1992) A preliminary map of the chicken genome. Genomics 13, 690–697

    Article  PubMed  CAS  Google Scholar 

  • Bumstead N, Wain H, Salmon N, Sillibourne J (1996) Genomic mapping of immunological genes. In Advances in Avian Immunological Research, JF Davison (ed) (Abingdon, UK: Carfax), in press

  • Burt DW, Bumstead N, Bitgood JJ, Ponce De Lyon FA, Crittenden LB (1995) Chicken genome mapping: a new era in avian genetics. Trends Genet. 11, 190–194

    Article  PubMed  CAS  Google Scholar 

  • Cheng HH, Crittenden LB (1994) Microsatellite markers for genetic mapping in the chicken. Poultry Sci 73, 539–546

    CAS  Google Scholar 

  • Cheng HH, Levin L, Vallejo RL, Khatib H, Dodgson JB, Crittenden LB, Hillel J (1995) Development of a genetic map of the chicken with markers of high utility. Poultry Sci 74, 1855–1874

    CAS  Google Scholar 

  • Crittenden LB, Provencher L, Santangelo L, Levin I, Abplanalp H, Briles R, Briles E, Dodgson JB(1993) Characterization of a red jungle fowl by white leghorn backcross reference population for molecular mapping of the chicken genome. Poultry Sci 72, 334–338

    Google Scholar 

  • Crooijmans RPMA, Van Oers PAM, Strijk JA, Van der Pol JJ, Groenen MAM (1996) Preliminary linkage map of the chicken (Gallus domesticus) genome based on microsatellite markers: 77 new markers mapped. Poultry Sci 75, 746–754

    CAS  Google Scholar 

  • Duclos MJ, Goddard C (1990) Insulin-like growth factor receptors in chicken liver membranes: binding properties, specificity, developmental pattern and evidence for a single receptor type. J Endocrinol 125, 199–206

    Article  PubMed  CAS  Google Scholar 

  • Gaunt SJ (1991) Expression patterns of mouse Hox genes: clues to an understanding of developmental and evolutionary strategies. BioEssays 13, 505–513

    Article  PubMed  CAS  Google Scholar 

  • Holland PWH (1991) Cloning and evolutionary analysis of msh-like ho-meobox genes from mouse, zebrafish and ascidian. Gene 98, 253–257

    Article  PubMed  CAS  Google Scholar 

  • Holland PWH (1992) Homeobox genes in vertebrate evolution. BioEssays 14, 267–273

    Article  PubMed  CAS  Google Scholar 

  • Johnson KR, Cook SA, Davisson MT (1994) Identification and genetic mapping of 151 dispersed members of 16 ribosomal protein multigene families in the mouse. Mamm Genome 5, 670–687

    Article  PubMed  CAS  Google Scholar 

  • Kappen C, Schugart K, Ruddle F (1989) Two steps in the evolution of antennapedia class vertebrate homeobox genes. Proc Natl Acad Sci USA 86, 5459–5463

    Article  PubMed  CAS  Google Scholar 

  • Klein S, Morrice DR, Sang H, Crittenden LB, Burt DW (1996) Genetic and physical mapping of the chicken IGFI gene to chromosome 1 and conservation of synteny with other vertebrate genomes. J Hered 87, 10–14

    PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12, 172–175

    Google Scholar 

  • Li H, Schwartz NB, Vertel BM (1993) cDNA cloning of chick cartilage chondroitin sulfate (aggrecan) core protein and identification of a stop codon in the aggrecan gene associated with the chondrodystrophy, Nanomelia. J Biol Chem 268, 23504–23511

    PubMed  CAS  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1991) PRIMER—a computer program for automatically selecting PCR primers. (Cambridge, MA: MIT Center for Genome Research and Whitehead Institute for Biomedical Research, USA)

    Google Scholar 

  • Manly KF (1993) A Macintosh program for storage and analysis of experimental genetic mapping data. Mamm Genome 4, 303–313

    Article  PubMed  CAS  Google Scholar 

  • Morizot DC (1983) Tracing linkage groups from fishes to mammals. J Hered 74, 413–416

    CAS  Google Scholar 

  • Nadeau JH, Taylor BA (1984) Lengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci USA 81, 814–818

    Article  PubMed  CAS  Google Scholar 

  • Primorac D, Stover ML, Clark SH, Rowe DW (1994) Molecular basis of Nanomelia, a heritable chondrodystrophy of chicken. Matrix Biol 14, 297–305

    Article  PubMed  CAS  Google Scholar 

  • Riegert P, Andersen R, Bumstead N, Döhring C, Dominguez-Steglich M, Engberg J, Salmonsen J, Schmid M, Schwager J, Skjodt K, Kaufman J (1996) The chicken β2-microglobulin gene is located on a non-major histocompatibility complex microchromosome. A small, G+C rich gene with X and Y boxes in the promoter. Proc Natl Acad Sci USA 93, 1243–1248

    Article  PubMed  CAS  Google Scholar 

  • Rodionov AV (1996) Micro versus macro: a review of structure and functions of avian micro- and macrochromosomes. Russ J Genet 32, 517–527

    CAS  Google Scholar 

  • Schugart L, Kappen C, Ruddle F (1989) Duplication of large genomic regions during the evolution of vertebrate homeobox genes. Proc Natl Acad Sci USA 86, 7067–7071

    Article  Google Scholar 

  • Stadler HS, Solrush M (1994) Characterization of the homeobox-containing gene GH6 identifies novel regions of homeobox gene expression in the developing chick embryo. Dev Biol 161, 251–262

    Article  PubMed  Google Scholar 

  • Stadler HS, Murray JC, Leysens NJ, Goodfellow PJ, Solrush M (1995) Phylogenetic conservation and physical mapping of the members of the H6 homeobox gene family. Mamm Genome 6, 383–388

    Article  PubMed  CAS  Google Scholar 

  • Takagi N, Sasaki M (1974) A phylogenetic study of bird karyotypes. Chromosoma 46, 91–120

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Kimata K, Line S, Strong D, Gao L-Y, Kozak CA, Yamada Y (1994) Mouse cartilage matrix deficiency (cmd) caused by a 7bp deletion in the aggrecan gene. Nature Genet 7, 154–157

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, C.T., Morrice, D.R., Paton, I.R. et al. Gene homologs on human chromosome 15q21-q26 and a chicken microchromosome identify a new conserved segment. Mammalian Genome 8, 436–440 (1997). https://doi.org/10.1007/s003359900463

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003359900463

Keywords

Navigation