Skip to main content
Log in

The nucleotide sequence of five ribosomal protein genes from the cyanelles ofCyanophora paradoxa: Implications concerning the phylogenetic relationship between cyanelles and chloroplasts

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The nucleotide sequences of the ribosomal protein genesrps18, rps19, rpl2, rpl33, and partial sequence ofrpl22 from cyanelles, the photosynthetic organelles of the protistCyanophora paradoxa, have been determined. These genes form two clusters oriented in opposite and divergent directions. One cluster contains therpl33 andrps18 genes; the other contains therpl2, rps19, andrpl22 genes, in that order. Phylogenetic trees were constructed from both the DNA sequences and the deduced protein sequences of cyanelles,Euglena gracilis and land plant chloroplasts, andEscherichia coli, using parsimony or maximum likelihood methods. In addition, a phylogenetic tree was built from a distance matrix comparing the number of nucleotide substitutions per site. The phylogeny inferred from all these methods suggests that cyanelles fall within the chloroplast line of evolution and that the evolutionary distances between cyanelles and land plant chloroplasts are shorter than betweenE. gracilis chloroplasts and land plant chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Banks MP (1970) Evolution and plants of the past. Wadsworth, Belmont CA

    Google Scholar 

  • Bohnert HJ, Michalowski C, Bevacqua S, Mucke H, Löffelhardt W (1985) Cyanelle DNA fromCyanophora paradoxa: physical mapping and location of protein coding regions. Mol Gen Genet 201:565–574

    Article  Google Scholar 

  • Breiteneder H, Seiser C, Löffelhardt W, Michalowski C, Bohnert H (1988) Physical map and protein gene map of cyanelle DNA from the second known isolate ofCyanophora paradoxa (Kies-strain). Curr Genet 13:199–206

    Article  PubMed  Google Scholar 

  • Bryant DA, De Lorimier R, Lambert DH, Dubbs J, Stirewalt VL, Stevens SE, Porter RD, Tam J, Jay E (1985) Molecular cloning and nucleotide sequence of theα and β subunits of allophycocyanin from the cyanelle genome ofCyanophora paradoxa. Proc Natl Acad Sci USA 82:3242–3246

    PubMed  Google Scholar 

  • Burger-Wiersma T, Veenhuis M, Korthals HJ, Van de Wiel CCM, Mur LR (1986) A new prokaryote containing chlorophylls a and b. Nature 320:262–264

    Article  Google Scholar 

  • Cech TR (1986) The generality of self-splicing RNA: relationship to nuclear mRNA splicing. Cell 44:207–210

    Article  PubMed  Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER,. Goericke R, Waterbury JB, Welschmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343

    Article  Google Scholar 

  • Christopher DA, Cushman JC, Price CA, Hallick RB (1988) Organization of ribosomal protein genesrpl23, rpl2, rps19, rpl22 andrps3 on theEuglena gracilis chloroplast genome. Curr Genet 14:275–286

    Article  PubMed  Google Scholar 

  • Dayhoff MO, Eck RV (1978) Atlas of protein sequence and structure. National Biomedical Research Foundation, Silver Spring MD

    Google Scholar 

  • Dereveux J, Haeberli P, Smithies O (1984) A comprehensive set of sequences and analysis programs for the VAX. Nucleic Acids Res 12:387–395

    PubMed  Google Scholar 

  • Emberger L (1968) Les plantes fossiles dans leurs rapports avec les végétaux vivants. Masson et Cie, Paris, France

    Google Scholar 

  • Evrard JL, Kuntz M, Straus NA, Weil JH (1988) A class-I intron in a cyanelle tRNA gene fromCyanophora paradoxa: phylogenetic relationship between cyanelles and plant chloroplasts. Gene 71:115–122

    Article  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22:521–565

    Article  PubMed  Google Scholar 

  • Floener L, Bothe H (1982) Metabolic activities inCyanophora paradoxa and its cyanelles: II. Photosynthesis and respiration. Planta 156:78–83

    Google Scholar 

  • Floener L, Danneberg G, Bothe H (1982) Metabolic activities inCyanophora paradoxa and its cyanelles: I. The enzymes of assimilatory nitrate reduction. Planta 156:70–77

    Google Scholar 

  • Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46:1–42

    PubMed  Google Scholar 

  • Heinhorst S, Shively JM (1983) Encoding of both subunits of ribulose 1,5 bisphosphate carboxylase by organelle genome ofCyanophora paradoxa. Nature 304:373–374

    Article  Google Scholar 

  • Hiratsuka J, Shimada H, Whittier RF, Ishibashi T, Sakamoto M, Mori M, Kondo M, Honji Y, Sun CR, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome. Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217:185–194

    PubMed  Google Scholar 

  • Jaynes JM, Vernon LP (1982) The cyanelle ofCyanophora paradoxa: almost a cyanobacterial chloroplast. Trends Biochem Sci 7:22–24

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  Google Scholar 

  • Ko K, Jaynes JM, Straus NA (1985) Homology between the cyanelle DNA ofCyanophora paradoxa and the chloroplast DNA ofVicia faba. Plant Sci 42:115–123

    Article  Google Scholar 

  • Kuntz M, Crouse EJ, Mubumbila M, Burkard G, Weil JH, Bohnert HJ, Mucke H, Löffelhardt W (1984) Transfer RNA gene mapping studies on cyanelle DNA fromCyanophora paradoxa. Mol Gen Genet 194:508–512

    Article  Google Scholar 

  • Kuntz M, Evrard JL, Weil JH (1988) Nucleotide sequence of the tRNASerGGA and tRNAGlyGCC genes from cyanelles ofCyanophora paradoxa. Nucleic Acids Res 16:8733

    PubMed  Google Scholar 

  • Lambert HL, Bryant DA, Stirewalt VL, Dubbs JM, Stevens SE, Porter RD (1985) Gene map for theCyanophora paradoxa cyanelle genome. J Bacteriol 164:659–664

    PubMed  Google Scholar 

  • Lemaux PG, Grossman AR (1985) Major light-harvesting polypeptides encoded in polycistronic transcripts in a eukaryotic alga. EMBO J 4:1911–1919

    PubMed  Google Scholar 

  • Lewin RA (1976) Prochlorophyta as a proposed new division of algae. Nature 261:697–698

    Google Scholar 

  • Morden CW, Golden SS (1989)psbA genes indicate common ancestry of prochlorophytes and chloroplasts. Nature 337: 382–385

    Article  PubMed  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwortMarchantia polymorpha chloroplast DNA. Nature 322:572–574

    Article  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    Google Scholar 

  • Tanaka M, Wakasugi T, Sugita M, Shinozaki K, Sugiura M (1986) Genes for the eight ribosomal proteins are clustered on the chloroplast genome of tobacco (Nicotiana tabacum): similarity to the S10 and spc operons ofEscherichia coli. Proc Natl Acad Sci USA 83:6030–6034

    PubMed  Google Scholar 

  • Thomas F, Massenet O, Dorne AM, Briat JF, Mache R (1988) Expression of therpl23, rpl2 andrps19 genes in spinach chloroplasts. Nucleic Acids Res 16:2461–2472

    PubMed  Google Scholar 

  • Turner S, Burger-Wiersma T, Giovannoni SJ, Mur LR, Pace NR (1989) The relationship of a prochlorophyteProchlorothrix hollandica to green chloroplasts. Nature 337:380–382

    Article  PubMed  Google Scholar 

  • Van den Eynde H, De Baere R, De Roeck E, Van de Peer Y, Vandenberghe A, Willekens P, De Wachter R (1988) The 5S ribosomal RNA sequences of a red algal rhodoplast and a gymnosperm chloroplast. Implications for the evolution of plastids and cyanobacteria. J Mol Evol 27:126–132

    PubMed  Google Scholar 

  • Whatley JM, Whatley FR (1981) Chloroplast evolution. New Phytol 87:233–247

    Google Scholar 

  • White ME (1986) The greening of Gondwana: the 400 million years story of Australia's plants. Reed Book Ltd Frenchs Forest, Australia

    Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    PubMed  Google Scholar 

  • Zhang H, Scholl R, Browse J, Somerville C (1988) Double stranded DNA sequencing as a choice for DNA sequencing. Nucleic Acids Res 16:1220

    PubMed  Google Scholar 

  • Zurawski S, Marvo-Zurawski S (1985) Structure of theEscherichia coli S10 ribosomal operon. Nucleic Acids Res 13: 4521–4526

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evrard, J.L., Kuntz, M. & Weil, J.H. The nucleotide sequence of five ribosomal protein genes from the cyanelles ofCyanophora paradoxa: Implications concerning the phylogenetic relationship between cyanelles and chloroplasts. J Mol Evol 30, 16–25 (1990). https://doi.org/10.1007/BF02102449

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02102449

Key words

Navigation