Skip to main content
Log in

Stability of transmembrane regions in bacteriorhodopsin studied by progressive proteolysis

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Proteinase K digestions of bacteriorhodopsin were carried out with the aim of characterizing the membrane-embedded regions of the protein. Products of digestions for two, eight or 24 hours were separated by high-pressure liquid chromotography. A computerized search procedure was used to compare the amino acid analyses of peptide-containing peaks with segments of the bacteriorhodopsin sequence. Molecular weight distributions of the products were determined by sodium dodecylsulfate-urea polyacrylamide gel electrophoresis. The structural integrity of the protein after digestion was monitored through the visible absorption spectrum, by X-ray diffraction of partially dried membranes, and by following release of biosynthetically-incorporated3H leucine from the digested membranes.

During mild proteolysis, bacteriorhodopsin was cleaved near the amino and carboxyl termini and at two internal regions previously identified as being accessible to the aqueous medium. Longer digestion resulted in cleavage at new sites. Under conditions where no fragments of bacteriorhodopsin larger than 9000 mol wt were observed, a significant proportion of the digested membranes retained diffraction patterns similar to those of native purple membranes. The harshest digestion conditions led to complete loss of the X-ray diffraction patterns and optical absorption and to release of half the hydrophobic segments of the protein from the membrane in the form of small soluble peptides. Upon cleavage of aqueous loop regions of the protein, isolated transmembrane segments may experience motion in a direction perpendicular to the plane of the membrane, allowing them access to protease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argos, P., Rao, J.K.M., Hargrave, P.A. 1982. Structural prediction of membrane-bound proteins.Eur. J. Biochem. 128:565–575

    Google Scholar 

  • Blaurock, A.E. 1975. The structure of purple membrane fromHalobacterium halobium: Analysis of the X-ray diffraction patterns.J. Mol. Biol. 93:139–158

    Google Scholar 

  • Brunner, J., Richards, F.M. 1980. Analysis of membranes photolabeled with lipid analogs.J. Biol. Chem. 255:3319–3329

    Google Scholar 

  • Dittmer, J.C., Wells, M.A. 1969. Quantitative and qualitative analysis of lipids and lipid components.Methods Enzymol. 14:482–530

    Google Scholar 

  • Dumont, M.E., Richards, F.M. 1984. Insertion of apocytochromec into lipid vesicles.J. Biol. Chem. 259:4147–4156

    Google Scholar 

  • Engelman, D.M., Goldman, A., Steitz, T. 1982. The identification of helical segments in the polypeptide chain of bacteriorhodopsinMethods Enzymol. 88:81–88

    Google Scholar 

  • Engelman, D.M., Steitz, T.A. 1981. The spontaneous insertion of proteins into membranes.Cell 23:411–422

    Google Scholar 

  • Engelman, D.M., Steitz, T.A. 1984. On the folding and insertion of globular membrane proteins.In: The Protein Folding Problem. D.B. Wetlaufer, editor. pp. 87–113. AAAS Selected Symposium 89. Westview Press, Boulder, Colo.

    Google Scholar 

  • Engelman, D.M., Zaccai, G. 1980. Bacteriorhodopsin is an inside out protein.Proc. Nat'l. Acad. Sci. USA 77:5894–5898

    Google Scholar 

  • Gerber, G.E., Anderegg, R.J., Herlihy, W.C., Gray, C.P., Biemann, K., Khorana, H.G. 1979. Partial primary structure of bacteriorhodopsin: Sequencing methods for membrane proteins.Proc. Nat'l. Acad. Sci. USA 76:227–231

    Google Scholar 

  • Gerber, G.E., Gray, C.P., Wildenauer, D., Khorana, H.G. 1977. Orientation of bacteriorhodopsin inHalobacterium halobium as studied by selective proteolysis.Proc. Nat'l. Acad. Sci. USA 74:5426–5430

    Google Scholar 

  • Govindjee, R., Ebrey, T.G., Crofts, A.R. 1980. The quantum efficiency of proton pumping of the purple membrane ofHalobacterium Halobium.Biophys. J. 30:231–242

    Google Scholar 

  • Henderson, R. 1975. The structure of the purple membrane fromHalobacterium halobium: Analysis of the diffraction pattern.J. Mol. Biol. 93:123–138

    Google Scholar 

  • Henderson, R., Unwin, P.N.T. 1975. Three dimensional model of purple membrane obtained by electron microscopy.Nature (London) 257:28–32

    Google Scholar 

  • Hess, G.P. 1971. Chymotrypsin-chemical properties and catalysis.In: The Enzymes (3rd Ed.) Vol. 3, pp. 213–248. Paul D. Boyer, editor. Academic, New York

    Google Scholar 

  • Huang, K.-S., Bayley, H., Liao, M.-J., London, E., Khorana, H.G. 1981. Refolding of an integral membrane protein: Denaturation, renaturation, and reconstitution of intact bacteriorhodopsin.J. Biol. Chem. 256:3802–3809

    Google Scholar 

  • Jahnig, F. 1983. Thermodynamics and kinetics of protein incorporation into membranes.Proc. Nat'l. Acad. Sci. USA 80:3691–3695

    Google Scholar 

  • Jap, B.K., Maestre, M.F., Hayward, S.B., Glaeser, R.M. 1983. Peptide chain secondary structure of bacteriorhodopsin.Biophys. J. 43:81–89

    Google Scholar 

  • Katre, N.V., Stroud, R.M. 1981. A probable linking sequence between two transmembrane components of bacteriorhodopsin.FEBS Lett. 136:170–174

    Google Scholar 

  • Khorana, H.G., Gerber, G.E., Herlihy, W.C., Gray, C.P., Anderegg, R.J., Nihei, K., Biemann, K. 1979. Amino acid sequence of bacteriorhodopsin.Proc. Nat'l. Acad. Sci. USA 76:5046–5050

    Google Scholar 

  • Kyte, J., Doolittle, R.F. 1982. A simple method for displaying the hydrophobic character of a protein.J. Mol. Biol. 157:105–132

    Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London) 227:680–685

    Google Scholar 

  • Lemke, H.-D., Bergmeyer, J., Oesterhelt, D. 1982. Determination of modified positions in the polypeptide chain of bacteriorhodopsin.Methods Enzymol. 88:89–98

    Google Scholar 

  • Liao, M.-J., Huang, K.-S., Khorana, H.G. 1984. Regeneration of native bacteriorhodopsin structure from fragments.J. Biol. Chem. 259:4200–4204

    Google Scholar 

  • Liao, M.-J., Khorana, H.G. 1984. Removal of the carboxyl-terminal peptide does not affect refolding or function of bacteriorhodopsin as a light-dependent proton pump.J. Biol. Chem. 259:4194–4199

    Google Scholar 

  • Mao, D., Wallace, B.A. 1984. Differential light scattering and absorption flattening effects are minimal in the circular dichroism spectra of small unilamellar vesicles.Biochemistry 23:2667–2673

    Google Scholar 

  • Michel-Villaz, M., Saibil, H.R., Chabre, M. 1979. Orientation of rhodopsin alpha helices in retinal rod outer segment membranes.Proc. Nat'l. Acad. Sci. USA 76:4405–4408

    Google Scholar 

  • Michel, H., Oesterhelt, D., Henderson, R. 1980. Orthorhombic two-dimensional crystal form of purple membrane.Proc. Nat'l. Acad. Sci. USA 77:338–342

    Google Scholar 

  • Moore, W.M., Holladay, L.A., Puett, D., Brady, R.N. 1974. On the conformation of the acetylcholine receptor protein fromTorpedo nobiliana.FEBS Lett. 45:145–149

    Google Scholar 

  • Oesterhelt, D., Stoeckenius, W. 1971. Rhodopsin-like protein from the purple membrane ofHalobacterium halobium.Nature New Biol. 233:149–152

    Google Scholar 

  • Ort, D.R., Parson, W.W. 1979. Enthalpy changes during the photo-chemical cycle of bacteriorhodopsin.Biophys. 25:341–354

    Google Scholar 

  • Ovchinnikov, Yu.A., Abdulaev, N.G., Feigina, M.Y., Kiselev, A.V., Lobanov, N.A. 1979. The structural basis of the functioning of bacteriorhodopsion: An overview.FEBS Lett. 100:219–224

    Google Scholar 

  • Popot, J.-L., Trewhella, J., Gerchman, S.E., Engelman, D.M. 1984. Two-dimensional lattice of hybrid bacteriorhodopsin molecules.In: Proceedings of the 8th International Biophysics Congress, Bristol, U.K. p. 51

  • Racker, E., Stoeckenius, W. 1974. Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation.J. Biol. Chem. 249:662–663

    Google Scholar 

  • Rohorek, M., Heyn, M.P. 1979. Binding of all-trans retinal to the purple membrane: Evidence for cooperativity and determination of the extinction coefficient.Biochemistry 18:4977–4983

    Google Scholar 

  • Rosenheck, K., Brith-Lindner, M., Lindner, P., Zakaria, A., Caplan, S.R. 1978. Proteolysis and flash photolysis of bacteriorhodopsin in purple membrane fragments.Biophys. Struct. Mechan. 4:301–313

    Google Scholar 

  • Ross, A.H., Radhakrishnan, R., Robson, R.J., Khorana 1982. Glycophorin as studied using photoactivatable phospholipids.J. Biol. Chem. 257:4152–4161

    Google Scholar 

  • Stubbs, G.W., Smith, H.G., Jr., Litman, B.J. 1976. Alkyl glucosides as effective solubilizing agents for bovine rhodopsin: A comparison with several commonly used detergents.Biochim. Biophys. Acta 425:46–56

    Google Scholar 

  • Swank, R.T., Munkres, K.D. 1971. Molecular weight analysis of oligopeptides by electrophoresis in polyacrylamide gel with sodium docecyl sulfate.Anal. Biochem. 39:462–477

    Google Scholar 

  • Tanford, C. 1980. The Hydrophobic Effect. John Wiley & Sons, New York

    Google Scholar 

  • Tarr, G.E., Crabb, J.W. 1983. Reverse phase high performance liquid chromatography of hydrophobic proteins and fragments thereof.Anal. Biochem. 39:99–107

    Google Scholar 

  • Trewhella, J., Anderson, S., Fox, R., Gogol, E., Khan, S., Engelman, D.M. 1983. Assignment of segments of the bacteriorhodopsin sequence to positions in the structural map.Biophys. J. 42:233–241

    Google Scholar 

  • Unwin, P.N.T., Henderson, R. 1975. Molecular structure determination by electron microscopy of unstained crystalline specimens.J. Mol. Biol. 94:425–440

    Google Scholar 

  • Von Heijne, G., Blomberg, C. 1979. Trans-membrane translocation of proteins: The direct transfer model.Eur. J. Biochem. 97:175–181

    Google Scholar 

  • Walker, J.E., Carne, A.F., Schmitt, H.W. 1979. Topography of the purple membrane.Nature (London) 278:653–654

    Google Scholar 

  • Wallace, B.A., Henderson, R. 1982. Location of the carboxyl terminal of bacteriorhodopsin in purple membrane.Biophys. J. 39:233–239

    Google Scholar 

  • Zwizinski, C., Wickner, W. 1980. Purification and characterization of the leader (signal) peptidase fromEscherichia coli.J. Biol. Chem. 255:7973–7977

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumont, M.E., Trewhella, J., Engelman, D.M. et al. Stability of transmembrane regions in bacteriorhodopsin studied by progressive proteolysis. J. Membrain Biol. 88, 233–247 (1985). https://doi.org/10.1007/BF01871088

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871088

Key Words

Navigation