Skip to main content
Log in

Electrochemical data on compartmentation into cell wall, cytoplasm, and vacuole of leaf cells in the CAM genusKalanchoë

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Transcellular electrical profiles ofKalanchoë leaf cells were obtained by pushing a glass micro-saltbridge through cells with the tip consecutively in the cell wall, cytoplasm, and vacuole. The electrical resistance of the cell wall was too small to be detectable, that of the plasmalemma and tonoplast was about 0.18–0.21 and 0.16–0.18 Ωm2, respectively. The electrical potential difference between the cytoplasm and the external medium,ψ co , was ≈−180 mV, the potential difference between the vacuole and the medium,ψ vo , was ≈−155mV, and thus the mean potential difference at the tonoplast,ψ vc , was about +25 mV. Potential difference,ψ vo , was independent of proton concentration in the external medium between pH 9 and 5.5, and behaved like an H+-electrode between pH 5 and 3. Depolarizations and hyperpolarizations ofψ vo obtained by increasing and decreasing, respectively, the Na+-concentrations in the medium were smaller than with changing K+-concentrations, suggesting that permeabilities areP Na +/P K +≈-0.23. Assessment of K+-compartmentation by flux analysis gave K+-concentrations in the cytoplasm including chloroplasts (c c) and vacuole (c v) asc c between 200 and 400 mmol kg−1 FrWt andc v ≈-15 mmol kg−1 FrWt. The Nernst criterion suggests that metabolically regulated K+ transport out of the vacuoles concentrates K+ in the cytoplasm. Fusicoccin (10−5 m) hyperpolarizedψ co by about 100 mV and depolarized the positiveψ vc by about 10 mV, the latter presumably being an insignificant effect. The evidence for the existence of proton pumps exchanging H+ and K+ at the plasmalemma and at the tonoplast is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, W.P., Hendrix, D.L., Higinbotham, N. 1974. Higher plant cell membrane resistance by a single intracellular electrode method.Plant Physiol. 53:122

    Google Scholar 

  • Brenneke, R., Lindemann, B. 1971. A, chopped current clamp for current injection and recording of membrane polarization with single electrodes of changing resistance.T.I.T.J. Life Sci. 1:53

    Google Scholar 

  • Demarty, M., Ripoll, C., Thellier, M. 1980. Ion exchange in plant cell walls.In: Plant Membrane Transport: Current Conceptual Issues. R.M. Spanswick, W.J. Lucas, and J. Dainty, editors. pp. 33–44. Elsevier/North-Holland, Amsterdam-New York-Oxford

    Google Scholar 

  • Doll, S., Rodier, F., Willenbrink, J. 1979. Accumulation of sucrose in vacuoles isolated from red beet tissue.Planta 144:407

    Google Scholar 

  • Drake, G. 1979. Electrical coupling, potentials and resistances in oat coleoptiles: Effects of azide and cyanide.J. Exp. Bot. 30:719

    Google Scholar 

  • Etherton, B., Keifer, D.W., Spanswick, R.M. 1977. Comparison of three methods for measuring electrical resistances of plant cell membranes.Plant Physiol. 60:684

    Google Scholar 

  • Fischer, E., Lüttge, U., Higinbotham, N. 1976 Effect of cyanide on the plasmalemma potential ofMnium.Plant Physiol. 58:240

    Google Scholar 

  • Greenham, C. G. 1966. The relative electrical resistances of the plasmalemma and tonoplast in higher plants.Planta 69:150

    Google Scholar 

  • Grignon, C., Lamant, A. 1973. Distribution de quatre cations dans les cellules libres d'Acer pseudoplatanus L.C.R. Acad. Sci. 276:1685

    Google Scholar 

  • Guy, M., Reinhold, L., Michaeli, D. 1979. Direct evidence for a sugar transport mechanism in isolated vacuoles.Plant Physiol. 64:61

    Google Scholar 

  • Gyenes, M., Andrianov, V.K., Bulychev, A.A., Kurella, G.A. 1978. Light-induced H+ accumulation in the vacuole ofNitellopsis obtusa.J. Exp. Bot. 29:1185

    Google Scholar 

  • Heller, R., Grignon, C., Rona, J.P. 1974. Importance of the cell wall in the thermodynamic equilibrium of ions in free cells ofAcer pseudoplatanus L.In: Membrane Transport in Plants. U. Zimmermann and J. Dainty, editors. pp. 239–243. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Jones, M.G.K., Novacky, A., Dropkin, U.H. 1975. Transmembrane potentials of parenchyma cells and nematode-induced transfer cells.Protoplasma 85:15

    Google Scholar 

  • Kluge, M., Ting, I.P. 1978. Crassulacean Acid Metabolism. Analysis of an Ecological Adaptation. 209 pp. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Lüttge, U. 1979. Malic acid transport across the tonoplast ofKalanchoë leaf cells: Tonoplast biophysics and biochemistry in relation to crassulacean acid metabolism (CAM).In: Plant Membrane Transport: Current Conceptual Issues. R.M. Spanswick, W.J. Lucas, and J. Dainty, editors. pp. 49–60. Elsevier/North Holland, Amsterdam-New York-Oxford

    Google Scholar 

  • Lüttge, U., Ball, E. 1974. Mineral ion fluxes in slices of acidified and de-acidified leaves of the CAM plantBryophyllum daigremontianum.Z. Pflanzenphysiol. 73:339

    Google Scholar 

  • Lüttge, U., Ball, E. 1979. Electrochemical investigation of active malic acid transport at the tonoplast into the vacuoles of the CAM plantKalanchoë daigremontiana.J. Membrane Biol. 47:401

    Google Scholar 

  • Lüttge, U., Ball, E., Tromballa, H.-W. 1975. Potassium independence of osmoregulated oscillations of malate2− levels in the cells of CAM-leaves.Biochem. Physiol. Pflanzen 167:267

    Google Scholar 

  • Marin, B., Marin-Lanza, M., Komor, E. 1980. The protonmotive potential difference across the vacuo-lysosomal membrane ofHevea brasiliensis and its change by a membrane-bound adenosine-triphosphatase.Eur. J. Biochem. (in press)

  • Marrè, E. 1977. Effects of fusicoccin and hormones on plant, cell membrane activities: Observations and hypothesis.In: Regulation of Cell Membrane Activities in Plants. E. Marrè and O. Cifferi, editors. pp. 185–202. Elsevier/North-Holland, Amsterdam

    Google Scholar 

  • Marrè, E. 1979. Fusicoccin: A tool in plant physiology.Annu. Rev. Plant Physiol. 30:273

    Google Scholar 

  • Matile, Ph. 1978. Biochemistry and function of vacuoles.Annu. Rev. Plant Physiol. 29:193

    Google Scholar 

  • Michalov, J. 1977a. Sodium permeability and conductance of maize primary root epidermis.Z. Pflanzenphysiol. 84:1

    Google Scholar 

  • Michalov, J. 1977b. Potassium ion permeability and conductance properties of maize primary root epidermis.Z. Pflanzenphysiol. 84:377

    Google Scholar 

  • Pennarum, A.M., Van de Sype, G., Grignon, C., Heller, R. 1978. Electrochemical state of potassium and sodium in free cells ofAcer pseudoplatanus L.Physiol. Plant. 42:331

    Google Scholar 

  • Pitman, M.G. 1976. Ion uptake by plant roots.In: Transport in Plants II. Part B, Tissues and Organs. Encyclopedia of Plant Physiology New Series, U. Lüttge and M.G. Pitman, editors. Vol. 2. pp. 95–128. Springer-Verlag. Berlin-Heidelberg-New York

    Google Scholar 

  • Pitman, M.G., Schaefer, N., Wildes, R.A. 1975a. Stimulation of H+ efflux and cation uptake by fusicoccin in barley roots.Plant Sci. Lett. 4:323

    Google Scholar 

  • Pitman, M.G., Schaefer, N., Wildes, R.A. 1975b. Relation between permeability to potassium and sodium ions and fusicoccinstimulated hydrogen-ion efflux in barley roots.Planta 126:61

    Google Scholar 

  • Raven, J.A. 1976. Transport in algal cells.In: Transport in Plants II. Part A, Cells. Encyclopedia of Plant Physiology New Series, U. Lüttge and M.G. Pitman, editors. Vol. 2, pp. 129–188. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Rona, J.P. 1973. Premières mesures du potentiel électrique sur des protoplastes et des vacuoles isolées d'Acer pseudoplatanus.C.R. Acad. Sci. Paris 277:185

    Google Scholar 

  • Rona, J.P. 1979. Evolution of electric resistance and potential during plasmolysis and the formation of protoplasts from free cells ofAcer pseudoplatanus L. Vth International Symposium Bioelectrochemistry and Bioenergetics, Weimar

  • Rona, J.P., Cornel, D. 1979. Résistances électriques chez les cellules libres, les protoplastes et les vacuoles isolées d'Acerpseudoplatanus L.Physiol. Vég. 17:1

    Google Scholar 

  • Rona, J.P., Cornel, D., Heller, R. 1977. Direct measurement of the potential difference between the cytoplasm of free cells ofAcer pseudoplatanus L. and the external medium.Bioelectrochem. Bioenerg. 4:185

    Google Scholar 

  • Rona, J.P., van de Sype, G., Cornel, D., Grignon, C., Heller, R. 1980. Plasmolysis effect on electrical characteristics of free cells and protoplasts ofAcer pseudoplatanus L.Bioelectrochem. Bioenerg. 7:2

    Google Scholar 

  • Spanswick, R.M. 1970. Electrophysiological techniques and the magnitude of the membrane potentials and resistances ofNitella translucens.J. Exp. Bot. 21:617

    Google Scholar 

  • Spanswick, R.M. 1972. Electrical coupling between cells of higher plants: A direct demonstration of intracellular communication.Planta 102:215

    Google Scholar 

  • Van Steveninck, R.F.M. 1976. Cellular differentiation, aging and ion transport.In: Transport in Plants II. Part B, Tissues and Organs. Encyclopedia of Plant Physiology New Series. U. Lüttge and M.G. Pitman, editors. Vol. 2, pp. 343–371. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Walker, N.A. 1960. The electric resistance of the cell membranes in aChara andNitella species.Aust. J. Biol. Sci. 13:468

    Google Scholar 

  • Walker, N.A., Pitman, M.G. 1976. Measurements of fluxes across membranes.In: Transport in Plants II. Part A, Cells. Encyclopedia of Plant Physiology New Series. U. Lüttge and M.G. Pitman, editors. Vol. 2, pp. 93–128. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • WynJones, R.-G., Brady, C.J., Speirs, J. 1979. Ionic and osmotic relations in plant cells.In: Recent Advances in the Biochemistry of Cereals. D.L. Laidman, and R.-G. WynJones, editors. pp. 63–103. Academic Press, London-New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rona, JP., Pitman, M.G., Lüttge, U. et al. Electrochemical data on compartmentation into cell wall, cytoplasm, and vacuole of leaf cells in the CAM genusKalanchoë . J. Membrain Biol. 57, 25–35 (1980). https://doi.org/10.1007/BF01868983

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868983

Keywords

Navigation