Skip to main content
Log in

Measurement of membrane potentials (ψ) of erythrocytes and white adipocytes by the accumulation of triphenylmethylphosphonium cation

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The accumulation of the lipophilic cation, triphenylmethylphosphonium, has been employed to determine the resting membrane potential in human erythrocytes, turkey erythrocytes, and rat white adipocytes. The triphenylmethylphosphonium cation equilibrates rapidly in human erythrocytes in the presence of low concentrations of the hydrophobic anion, tetraphenylborate. Tetraphenylborate does not accelerate the uptake of triphenylmethylphosphonium ion by adipocytes. The cell associatedvs. extracellular distribution of the triphenylmethylphosphonium ion is proportional to changes in membrane potential. The distribution of this ion reflects the membrane potential determining concentration of the ion with dominant permeability in a “Nernst” fashion. The resting membrane potentials for the human erythrocyte, turkey erythrocyte, and rat white adipocyte were found to be −8.4±1.3, −16.8±1.1, and −58.3±5.0 mV, respectively, values which compare favorably with values obtained by other methods. In addition, changes in membrane potential can be assessed by following triphenylmethylphosphonium uptake without determining the intracellular water space. The method has been successfully applied to a study of hormonally induced changes in membrane potential of rat white adipocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altendorf, K., Hirata, H., Harold, F.M. 1975. Accumulation of lipid soluble ions and of rubidium as indicators of the electrical potential of membrane vesicles ofEscherichia coli.J. Biol. Chem. 250:1405

    PubMed  Google Scholar 

  • Azzone, G.F., Bragadin, T.N., Pozzan, T., Dell'Antone, P. 1976. Proton electrochemical potential in steady state rat liver mitochondria.Biochim. Biophys. Acta 459:96

    Google Scholar 

  • Azzone, G.F., Pozzan, T., Massari, S., Bragadin, M. 1978. Proton electrochemical gradients and rate of controlled respiration in mitochondria.Biochim. Biophys. Acta 501:296

    PubMed  Google Scholar 

  • Bakeeva, L.E., Grinius, L.L., Jasaitis, A.A., Kuliene, V.V., Levitsky, D.D., Liberman, E.A., Severina, I.I., Skulachev, P. 1970. Conversion of biomembranes produced energy into electrical form. II. Intact mitochondria.Biochim. Biophys. Acta 216:13

    PubMed  Google Scholar 

  • Bakker, E.P., Rottenberg, J., Caplan, S.P. 1976. An estimation of the light induced electrochemical potential difference on protons across the membrane ofHalobacterium holobium.Biochim. Biophys. Acta 440:557

    PubMed  Google Scholar 

  • Cabantchik, Z.I., Rothstein, A. 1972. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives.J. Membrane Biol. 10:311

    Google Scholar 

  • Cabantchik, Z.I., Rothstein, A. 1974. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disufonic stilbene binding sites in proteins involved in permeation.J. Membrane Biol. 15:207

    Google Scholar 

  • Clausen, T., Rodbell, M., Durand, P. 1969. The metabolism of isolated fat cells. VII. Sodium-linked, energy-dependent, and ouabain-sensitive potassium accumulation in ghosts.J. Biol. Chem. 244:1252

    PubMed  Google Scholar 

  • Dahl, J.L., Hokin, L.E. 1974. The Na+−K+ ATPase.Annu. Rev. Biochem. 43:327

    PubMed  Google Scholar 

  • Deutsch, C., Erecinska, R., Werrlein, R., Silver, I.A. 1979a. Cellular energy metabolism, trans-plasma, and trans-mitochondrial membrane potentials and pH-gradients in mouse neuroblastoma.Proc. Nat. Acad. Sci. USA 76:2175

    PubMed  Google Scholar 

  • Deutsch, C.J., Holiam, A., Holiam, S.K., Daniele, R.P., Wilson, D.F. 1979b. Transmembrane electrical and pH gradients across human erythrocytes and human peripheral lymphocytes.J. Cell. Physiol. 99:79

    PubMed  Google Scholar 

  • Deutsch, C., Küla, T. 1978. Transmembrane electrical and pH gradients ofP. denitrificans and their relationship to oxidative phosphorylation.FEBS Lett. 87:145

    PubMed  Google Scholar 

  • Freedman, J.C., Hoffman, J.F. 1979a. Ionic and osmotic equilibria of human red blood cells treated with nystatin.J. Gen. Physiol. 74:157

    PubMed  Google Scholar 

  • Freedman, J.C., Hoffman, J.F. 1979b. The relation between dicarbocyanine dye fluorescence and the membrane potential of human red blood cells set at varying Donnan equilibria.J. Gen. Physiol. 74:187

    PubMed  Google Scholar 

  • Fünder, J., Wieth, J.O. 1966. Chloride and hydrogen ion distribution between human red cells and plasma.Acta Physiol. Scand. 68:234

    Google Scholar 

  • Gliemann, J., Osterlind, K., Vinten, J., Gammeltoft, S. 1972. A procedure for measurement of distribution spaces in isolated fat cells.Biochim. Biophys. Acta 286:1

    PubMed  Google Scholar 

  • Grinius, L.L., Jasaitas, A.A., Kadziauskas, Y.P., Liberman, E.A., Skulachev, V.P., Topali, V.P., Tsofina, L.M., Vladimirova, M.A. 1970. On conversions of biomembrane produced energy into electric form. I. Submitochondrial particles.Biochim. Biophys. Acta 216:1

    PubMed  Google Scholar 

  • Grollman, E.F., Lee, G., Ambesi-Impiombato, H.G., Meldolesi, M.F., Aloj, S.M., Coon, H.G., Kaback, H.R., Kohn, L.D. 1977. Effects of thyrotropin on the thyroid cell membrane: Hyperpolarization induced by hormone-receptor interaction.Proc. Nat. Acad. Sci. USA 74:2352

    PubMed  Google Scholar 

  • Harris, E.J., Maizels, M. 1952. Distribution of ions in suspensions of human erythrocytes.J. Physiol. (London) 118:40

    Google Scholar 

  • Heinz, E.D., Geck, P., Peitreyk, C. 1975. Driving forces of amino acid transport in animal cells.Ann. N.Y. Acad. Sci. 264:428

    PubMed  Google Scholar 

  • Hirata, H., Altendorf, J., Harold, F.M. 1973. Role of an electrical potential in the coupling of metabolic energy to active transport by membrane vesicles ofEscherichia coli.Proc. Nat. Acad. Sci. USA 70:1804

    PubMed  Google Scholar 

  • Hoffman, J.E., Laris, P.C. 1974. Determinations of membrane potentials in human andamphiuma red blood cells by means of a fluorescent probe.J. Physiol. (London) 239:519

    Google Scholar 

  • Hoffman, J.F., Lassen, U.V. 1971. Plasma membrane potentials in amphibian red cells.Proc. Int. Union Physiol. Sci. 9:253 (abstr.)

    Google Scholar 

  • Horn, L.W., Rogus, E.M., Zierler, K.L. 1973. Water content of isolated fat cells.Biochim. Biophys. Acta 313:399

    PubMed  Google Scholar 

  • Horn, L.W., Zierler, K.L. 1975. Effects of external potassium on potassium efflux and accumulation by rat white adipocytes.J. Physiol. (London) 253:207

    Google Scholar 

  • Hunter, M.J. 1971. A quantitative estimate of the non-exchangerestricted chloride permeability of the human red cell.J. Physiol. (London) 218:49P (abstr.)

    Google Scholar 

  • Hunter, M.J. 1974. The use of lipid bilayer as cell membrane models: An experimental test using the ionophore, valinomycin.In: Drugs and Transport Processes. B.A. Callinghan, editor. p. 227. Macmillan, London

    Google Scholar 

  • Katz, B. 1966. Nerve, Muscle, and Synapse. p. 41. McGraw Hill, New York

    Google Scholar 

  • Kimmich, G.A., Philo, R.D., Eddy, A.A. 1977. The effects of ionophores on the fluorescence of the cation 3,3′-dipropyloxadicarbocyanine in the presence of pigeon erythrocytes, erythrocyte ghosts, or liposomes.Biochem. J. 168:81

    PubMed  Google Scholar 

  • Knauf, P.A., Fuhrman, D.F., Rothstein, S., Rothstein, A. 1977. The relationship between anion exchange and net anion flow across the human red blood cell membranes.J. Gen. Physiol. 69:363

    PubMed  Google Scholar 

  • Komar, E., Tanner, W. 1976. The determination of the membrane potential ofChlorella vulgaris. Evidence for electrogenic sugar transport.Eur. J. Biochem. 70:197

    PubMed  Google Scholar 

  • Korchak, H.M., Weissman, G. 1978. Change in membrane potential of human granulocytes antecede the metabolic responses to surface stimulation.Proc. Nat. Acad. Sci. USA 75:3818

    PubMed  Google Scholar 

  • Lassen, U.V. 1972. Membrane potential and membrane resistance of red cells.In: Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status, M. Rorth and Astrüp, P., editors. p. 291. Academic Press, New York

    Google Scholar 

  • Lassen, U.V., Nielsen, A.M.T., Page, L., Simonsen, L.O. 1971. The membrane potential of Ehrlich ascites tumor cells. Microelectrode measurements and their critical evaluation.J. Membrane Biol. 6:269

    Google Scholar 

  • Lichtshtein, D., Dunlop, K., Kaback, H.R., Blume, A.J. 1979a. Mechanism of monensin induced hyperpolarization of neuroblastoma-glioma hybrid WG108-15.Proc. Nat. Acad. Sci. USA 76:2580

    PubMed  Google Scholar 

  • Lichtshtein, D., Kaback, H.R., Blume, A.J. 1979b. Use of lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspensions.Proc. Nat. Acad. Sci. USA 76:650

    PubMed  Google Scholar 

  • Livingston, J.N., Lockwood, D.H. 1974. Direct measurements of sugar uptake in small and large adipocytes from young and adult rats.Biochem. Biophys. Res. Commun. 61:989

    PubMed  Google Scholar 

  • Lombardi, F.J., Reeves, J.P., Short, S.A., Kaback, H.R. 1974. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles.Ann. N.Y. Acad. Sci. 227:312

    PubMed  Google Scholar 

  • Macey, R.I., Adorant, J.S., Orme, F.W. 1978. Erythrocyte membrane potentials determined by hydrogen ion distribution.Biochim. Biophys. Acta 512:284

    PubMed  Google Scholar 

  • Miller, A.G., Budd, K. 1976. Evidence for a negative membrane potential and for movement of Cl against its electrochemical gradient in theAscomytes neocosmosporo vasinfect.J. Bacteriol. 132:741

    Google Scholar 

  • Miller, Z.V., Schlosser, G.H., Beigelman, P.M. 1966. Electrical potentials and isolated fat cells.Biochim. Biophys. Acta 112:375

    PubMed  Google Scholar 

  • Minemura, T., Lacy, W.W., Crofford, O.B. 1970. Regulation of the transport and metabolism of amino acids in isolated fat cells. Effect of insulin and a possible role for adenosine 3′, 5′-monophosphate.J. Biol. Chem. 245:3872

    PubMed  Google Scholar 

  • Perry, M.C., Hales, C.N. 1969. Rates of efflux and intracellular concentrations of potassium sodium, and chloride ions in isolated fat cells from the rat.Biochem J. 115:865

    PubMed  Google Scholar 

  • Ramos, S., Grollman, E.F., Lazo, P.S., Dyer, S.A., Habig, W.H., Hardegree, M.C., Kaback, H.R., Kohn, L.D. 1979. Effect of tetanus toxin on the accumulation of the permeant lipophilic cation, tetraphenyl phosphonium by guinea pig brain synaptosomes.Proc. Nat. Acad. Sci. USA 76:4783

    PubMed  Google Scholar 

  • Rodbell, M. 1964. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis.J. Biol. Chem. 239:375

    PubMed  Google Scholar 

  • Russell, J.T., Beeler, T., Martonosi, A. 1979a. Optical probe responses on sarcoplasmic reticulum: Merocyanine and oxonal dyes.J. Biol. Chem. 254:2047

    PubMed  Google Scholar 

  • Russell, J.T., Beeler, T., Martonosi, A. 1979b. Opical probe responses on sarcoplamic reticulum: Oxacarboxyanines.J. Biol. Chem. 254:2040

    PubMed  Google Scholar 

  • Sarkadi, B., Szasz, I., Gardos, G. 1976. The use of ionophores for rapid loading of human red cells with radioactive cations in cation pump studies.J. Membrane Biol. 26:357

    Google Scholar 

  • Schuldiner, S., Kaback, H.R. 1975. Membrane potential and active transport in membrane vesicles fromEscherichia coli.Biochemisty 14:5451

    Google Scholar 

  • Skulachev, V.P. 1971. Energy transformation in the respiratory chain.In: Current Topics in Bioenergetics. D.R. Sanadi, editor. Vol. 4, p. 127. Academic Press, New York

    Google Scholar 

  • Waggoner, A.S. 1976. Optical probes of membrane potential.J. Membrane Biol. 27:317

    Google Scholar 

  • Waggoner, A.S. 1979. Dye indicators of membrane potentials.Annu. Rev. Biophys. Bioeng. 8:47

    PubMed  Google Scholar 

  • Warburg, E.J. 1922. Carbonic acid compounds and hydrogen activities in blood and salt solutions.Biochem. J. 16:152

    Google Scholar 

  • Zierler, K.L. 1972. Insulin, ions, and membrane potentials.In: Handbook of Physiology Section 7: Endocrinology, Vol. I: Endocrine Pancreas. R.O. Greep, and E.B. Astwood, editors. Vol. 22, p. 347, Williams & Wilkins, Baltimore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, K., Haspel, H.C., Vallano, M.L. et al. Measurement of membrane potentials (ψ) of erythrocytes and white adipocytes by the accumulation of triphenylmethylphosphonium cation. J. Membrain Biol. 56, 191–201 (1980). https://doi.org/10.1007/BF01869476

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869476

Keywords

Navigation