Skip to main content
Log in

Hypotonic hemolysis of human red blood cells: a two-phase process

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Previous use of hemolysis time measurement to determine permeability coefficients for the red blood cell membrane rested on the assumption that cells swelling in a hypotonic medium hemolyzed immediately on reaching critical volume. By preswelling red cells to various volumes prior to immersion in hemolytic solutions we extrapolate to the hemolysis time of red cells immersed at critical volume and thereby find a significant period of time during which the cells apparently remain in a spherical form prior to release of hemoglobin. Revised estimates of permeability coefficients follow from including this spherical (nonswelling) phase. In addition, the appreciation of a characteristic time period during which the membrane is under tension provides new opportunity to study physical and chemical properties of the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman, P.L. 1961. Biological Handbooks: Blood and Other Body Fluids. p. 19. Federation of American Societies for Experimental Biology, Washington, D.C.

    Google Scholar 

  • Beck, J.S., Jay, A.W.L., Saari, J.T. 1972. Effects of cytochalasin B on osmotic fragility and deformability of human erythrocytes.Canad. J. Physiol. Pharmacol. 50:684

    Google Scholar 

  • Cabantchik, Z.I., Rothstein, A. 1974. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation.J. Membrane Biol. 15:207

    Google Scholar 

  • Caham, P.B., Parkinson, D.R. 1970. The area and volume of single human erythrocytes during gradual osmotic swelling to hemolysis.Canad. J. Physiol. Pharmacol. 48:369

    Google Scholar 

  • Christiansen, J. 1970. Numerical solution of ordinary simultaneous differential equations of the 1st order using a method for automatic step change.Numer. Math. 14:317

    Google Scholar 

  • Colley, C.M., Zwaal, R.F.A., Roelofsen, B., van Deenen, L.L.M. 1973. Lytic and non-lytic degradation of phospholipids in mammalian erythrocytes by pure phospholipases.Biochim. Biophys. Acta 307:74

    Google Scholar 

  • Danon, D. 1961. Osmotic hemolysis by a gradual decrease in the ionic strength of the surrounding medium.J. Cell. Comp. Physiol. 57:111

    Google Scholar 

  • Dick, D.A.T. 1959. Osmotic properties of living cells.Int. Rev. Cytol. 8:387

    Google Scholar 

  • Evans, E., Fung, Y.-C. 1972. Improved measurements of erythrocyte geometry.Microvascular Res. 4:335

    Google Scholar 

  • Fletcher, J.E., Schrager, R.I. 1968. A user's guide to least squares model fitting.NIH Div. Computer Res. Technol., Bethesda, Maryland

  • Fox, L. 1962. Numerical Solution of Ordinary and Partial Differential Equations. p. 24. Pergamon Press, London

    Google Scholar 

  • Goldstein, D.A., Solomon, A.K. 1960. Determination of equivalent pore radius for human red cell by osmotic pressure measurement.J. Gen. Physiol. 44:1

    Google Scholar 

  • Jacobs, M.H. 1952. The measurement of cell permeability with particular reference to the erythrocyte.In: Trends in Physiology and Biochemistry. E.S. Guzman Barron, editor. p. 149. Academic Press, New York

    Google Scholar 

  • Jay, A.W.L. 1975. Geometry of the human erythrocyte. I. Effect of albumin on cell geometry.Biophys. J. 15:205

    Google Scholar 

  • Johnson, J.A., Wilson, T.A. 1967. Osmotic volume changes induced by a permeable solute.J. Theoret. Biol. 17:304

    Google Scholar 

  • Jung, C.Y., Carlson, L.M., Balzer, C.J. 1973. Characteristics of the permeability barrier of human erythrocyte ghosts to non-electrolytes.Biochim. Biophys. Acta 298:101

    Google Scholar 

  • Kedem, O., Katchalsky, A. 1958. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes.Biochim. Biophys. Acta 27:229

    Google Scholar 

  • Kendall, M.G., Stuart, A. 1963. The Advanced Theory of Statistics. Vol. 1. Distribution Theory. p. 39. Charles Griffin & Co., London

    Google Scholar 

  • Kregenow, F.M. 1971. The response of duck erythrocytes to nonhemolytic hypotonic media. Evidence for a volume-controlling mechanism.J. Gen. Physiol. 58:372

    Google Scholar 

  • Ponder, E. 1971. Hemolysis and Related Phenomena. p. 85. Grune & Stratton, London

    Google Scholar 

  • Poznansky, M., Solomon, A.K. 1972. Regulation of human red cell volume by linked cation fluxes.J. Membrane Biol. 10:259

    Google Scholar 

  • Saari, J.T., Beck, J.S. 1974. Probability density function of the red cell membrane permeability coefficient.Biophys. J. 14:33

    Google Scholar 

  • Schmidt-Ullrich, R., Knüfermann, H., Wallach, D.F.H. 1973. The reaction of 1-dimethyl-aminonaphthalene-5-sulfonyl chloride (DANSCL) with erythrocyte membranes. A new look at “vectorial” membrane probes.Biochim. Biophys. Acta 307:353

    Google Scholar 

  • Schwoch, G., Passow, H. 1973. Preparation and properties of human erythrocyte ghosts.Mol. Cell. Biochem. 2:197

    Google Scholar 

  • Seeman, P. 1967. Transient holes in the erythrocyte membrane during hypotonic hemolysis and stable holes in the membrane after lysis by saponin and lysolecithin.J. Cell Biol. 32:55

    Google Scholar 

  • Seeman, P., Sauks, F., Argent, W., Kwant, W.O. 1969. The effect of membrane-strain rate and of temperature on erythrocyte fragility and critical hemolytic volume.Biochim. Biophys. Acta 183:476

    Google Scholar 

  • Smith, C.L. 1973. Automatic step change Merson differential equation solver.In: The IMSL Library, Vol. 1, p. DASCRU. International Mathematical and Statistical Libraries, Inc., Houston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saari, J.T., Beck, J.S. Hypotonic hemolysis of human red blood cells: a two-phase process. J. Membrain Biol. 23, 213–226 (1975). https://doi.org/10.1007/BF01870251

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870251

Keywords

Navigation