Skip to main content
Log in

Na+ and K+ fluxes stimulated by Na+-coupled glucose transport: Evidence for a Ba2+-insensitive K+ efflux pathway in rabbit proximal tubules

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Addition of glucose or the nonmetabolizable analogue α-methyl-d-glucoside to rabbit proximal tubules suspended in a glucoseand alanine-free buffer caused a sustained increase in intracellular Na+ content (+43±7 nmol · (mg protein)−1) and a concomitant but larger decrease in K+ content (−72±11 nmol· (mg protein)−1). A component of the net K+ efflux was Ba2+ insensitive, and was inhibited by high (1mm) but not low (10 μm) concentrations of the diuretics, furosemide and bumetanide. The increase in intracellular Na+ content is consistent with the view that the increased rates of Na+ and water transport seen in the proximal tubule in the presence of glucose can be attributed (at least in part) to a stimulation of basolateral pump activity by an increased [Na+] i .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, W.McD. Musselman, D.L., Reiteny, H.C. 1970. Sodium, potassium, and water content of isolated bullfrog small intestinal epithelia.Am. J. Physiol. 219:1023–1026

    Google Scholar 

  • Avison, M.J., Gullans, S.R., Ogino, T., Giebisch, G., Shulman, R.G. 1987. Measurement of Na+−K+ coupling ratio of Na+−K+-ATPase in rabbit proximal tubules.Am. J. Physiol. 253:C126-C136

    PubMed  Google Scholar 

  • Balaban, R.S., Soltoff, S.P., Storey, J.M., Mandel, L.J. 1980. Improved renal cortical tubule suspension: Spectrophotometric study of O2 delivery.Am. J. Physiol. 238:F50-F59

    PubMed  Google Scholar 

  • Bello-Reuss, E. 1982. Electrical properties of the basolateral membrane of the straight portion of the rabbit proximal renal tubule.J. Physiol. (London) 326:49–63

    Google Scholar 

  • Brazy, R.C., Gunn, R.B. 1976. Furosemide inhibition of chloride transport in human red blood cells.J. Gen. Physiol. 68:583–599

    Article  PubMed  Google Scholar 

  • Brenner, B.M., Keimowitz, R.I., Wright, F.S., Berliner, R.S. 1969. An inhibitory effect of furosemide on sodium reabsorption by the proximal tubule of the rat nephron.J. Clin. Invest. 48:290–300

    PubMed  Google Scholar 

  • Burg, M., Patlak, C., Green, N., Villey, D. 1976. Organic solutes in fluid reabsorption by renal proximal convoluted tubules.Am. J. Physiol. 231:627–637

    PubMed  Google Scholar 

  • Burg, M., Stoner, L., Cardinal, J., Green, N. 1973. Furosemide effect on isolated perfused tubules.Am. J. Physiol. 225:119–124

    PubMed  Google Scholar 

  • Cardinal, J., Lapointe, J.-Y., Laprade, R. 1984. Luminal and peritubular ionic substitutions and intracellular potential of the rabbit proximal convoluted tubule.Am. J. Physiol. 247:F352-F364

    Google Scholar 

  • Corcia, A., Armstrong, W.McD. 1983. KCl Cotransport: A mechanism for basolateral chloride exit in gallbladder.J. Membrane Biol. 76:173–182

    Google Scholar 

  • Csaky, T.Z., Esposito, G. 1969. Osmotic swelling of intestinal epithelial cells during active sugar transport.Am. J. Physiol. 217:753–755

    Google Scholar 

  • Evans, M.G., Marty, A., Tan, Y.P., Trautman, A. 1986. Blockage of Ca-activated Cl conductance by furosemide in rat lacrimal glands.Pfluegers Arch. 406:65–68

    Google Scholar 

  • Grasset, E., Gunter-Smith, P., Schultz, S.G. 1983. Effects of Na-coupled alanine transport on intracellular K activities and the K conductances of the basolateral membranes ofNecturus small intestine.J. Membrane Biol. 78:89–94

    Google Scholar 

  • Guggino, W.B. 1986. Functional heterogeneity in the early distal tubule of theAmphiuma kidney: Evidence for two modes of Cl and K+ transport across the basolateral cell membrane.Am. J. Physiol. 250:F340-F440

    Google Scholar 

  • Gullans, S.R. 1982. Transport respiration, and gluconeogenesis in the renal proximal tubule. Ph.D. Dissertation. Duke University. Durham, NC

    Google Scholar 

  • Gullans, S.R., Avison, M.J., Ogino, T., Giebisch, G., Shulman, R.G. 1985. NMR measurements of intracellular sodium in the rabbit proximal tubule.Am. J. Physiol. 249:F160-F168

    PubMed  Google Scholar 

  • Gullans, S.R., Harris, S.I., Mandel, L.J. 1984. Glucose-dependent respiration in suspensions of rabbit cortical tubules.J. Membrane Biol. 78:257–262

    Google Scholar 

  • Gupta, R.K., Gupta, P. 1982. Direct observation of resolved resonances from intra- and extracellular sodium-23 ions in NMR studies of intact cells and tissues using dysprosium (III) tripolyphosphate as a paramagnetic shift reagent.J. Magn. Reson 47:344–350

    Google Scholar 

  • Harris, S.I., Balaban, R.S., Mandel, L.J. 1980. Oxygen consumption and cellular ion transport: Evidence for adenosine triphosphate to O2 ratio near 6 in intact cell.Science 208:1148–1150

    PubMed  Google Scholar 

  • Harris, S.I., Patton, L., Barrett, L., Mandel, L.J. 1982. (Na+, K+)-ATPase kinetics within the intact renal cell. The role of oxidative metabolism.J. Biol. Chem. 257:6996–7002

    PubMed  Google Scholar 

  • Hudson, R.L., Schultz, S.G. 1984. Sodium-coupled sugar transport: Effects on intracellular sodium activities and sodium pump activity.Science 224:1237–1239

    PubMed  Google Scholar 

  • Khuri, R.N. 1980. Intracellular ion activity, measurements in kidney tubules.Curr. Topics Membr. Transp. 13:73–92

    Google Scholar 

  • Kinne, R. 1976. Properties of the glucose transport system in the renal brush border membrane.Curr. Topics Membr. Transp. 8:209–267

    Google Scholar 

  • Kinne, R., Murer, H., Kinne-Saffran, E., Thees, M., Sachs, G. 1975. Sugar transport by renal plasma membrane vesicles.J. Membrane Biol. 21:375–395

    Google Scholar 

  • Lang, F., Messner, G., Rehwald, W. 1986. Electrophysiology of sodium-coupled transport in proximal renal tubules.Am. J. Physiol. 250:F953-F962

    PubMed  Google Scholar 

  • Larson, M., Spring, K. 1983. Bumetanide inhibition of NaCl transport byNecturus gallbladder.J. Membrane Biol. 74:123–129

    Google Scholar 

  • Larson, M., Spring, K. 1984. Volume regulation byNecturus gallbladder: Basolateral KCl exit.J. Membrane. Biol. 81:219–232

    Google Scholar 

  • Lau, K.R. Hudson, R.L., Schultz, S.G. 1984. Cell swelling increases a barium-inhibitable potassium conductance in the basolateral membranes ofNecturus small intestine.Proc. Natl. Acad. Sci. USA 81:3591–3594

    PubMed  Google Scholar 

  • Lauf, P.K. 1985. K+: Cl Cotransport: Sulfhydryls divalent carions, and the mechanism of volume activation in a red cell.J. Membrane Biol. 88:1–13

    Google Scholar 

  • Lee, C.O., Armstrong, W. McD. 1972. Activities of sodium and potassium ions in epithelial cells of small intestine.Science 175:1261–1264

    PubMed  Google Scholar 

  • Linshaw, M.A. 1980. Effect of metabolic inhibitors on renal tubule cell volume.Am. J. Physiol. 239:F571-F577

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    PubMed  Google Scholar 

  • Messner, G., Koller, A., Lang, F. 1985. The effect of phenylalanine on intracellular pH and sodium activity in proximal convoluted tubule cells of the frog kidney.Pfluegers Arch. 404:145–149

    Google Scholar 

  • Morgunov, N., Boulpaep, E.L. 1987. Electrochemical analysis of renal Na+-glucose cotransport in salamander proximal tubules.Am. J. Physiol. 252:F154-F169

    PubMed  Google Scholar 

  • Palfrey, H., Feit, P.W., Greengard, P. 1980. cAMP-stimulated cation cotransport in avian erythrocytes: Inhibition by “loop” diuretics.Am. J. Physiol. 238:C139-C148

    Google Scholar 

  • Reuss, L. 1983. Basolateral KCl cotransport in a NaCl-absorbing epithelium.Nature (London) 305:723–726

    Google Scholar 

  • Reynolds, R., Segal, S. 1974. Effects of dibutyryl cyclic AMP on α-methyl-d-glucoside accumulation in rabbit kidney.Am. J. Physiol. 226:791–795

    PubMed  Google Scholar 

  • Samarzjia, I., Hinton, B.T., Fromter, E. 1982. Electrophysiological analysis of rat renal system and amino acid transport: II. Dependence on various transport parameters and inhibitors.Pfluegers Arch. 393:190–197

    Google Scholar 

  • Sasaki, S., Ishibashi, K., Yoshiyama, N., Shiigai, T. 1988. KCl cotransport across the basolateral membrane of rabbit renal proximal straight tubules.J. Clin. Invest. 81:194–199

    PubMed  Google Scholar 

  • Schafer, J.A., Williams, J.C., Jr. 1985. Transport of metabolic substrates by the proximal nephron.Annu. Rev. Physiol. 47:103–125

    PubMed  Google Scholar 

  • Schultz, S.G., Frizzell R.A., Nellans, H.N. 1974. Ion transport by mammalian small intestine.Annu. Rev. Physiol. 36:51–91

    Google Scholar 

  • Schultz, S.G., Fuisz, R.E., Curran, P.F. 1966. Amino acid and sugar transport in rabbit ileum.J. Gen. Physiol. 49:849–866

    PubMed  Google Scholar 

  • Siebens, A. 1985. Cellular volume control.In: The Kidney: Physiology and Pathophysiology. D.W. Seldin and G. Giebisch, editors. pp. 91–115. Raven, New York

    Google Scholar 

  • Silverman, M. 1974. The chemical and steric determinants governing suger interactions with renal tubular membranes.Biochim. Biophys. Acta 332:248–262

    Google Scholar 

  • Soltoff, S.P., Mandel, L.J. 1986. Potassium transport in the rabbit proximal tubule: Effects of barium, oubain, valinomycin, and other ionophores.J. Membrane Biol. 94:153–161

    Google Scholar 

  • Ullrich, K.J. 1979. Sugar, amino acid and Na+ cotransport in the proximal tubule.Annu. Rev. Physiol. 41:181–195

    Google Scholar 

  • White, J.F., Burnup, K., Ellingsen, D. 1986. Effect of sugars and amino acids on amphibia intestinal Cl transport and intracellular Na+, K+, and Cl activity.Am. J. Physiol. 250:G109-G117

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avison, M.J., Gullans, S.R., Ogino, T. et al. Na+ and K+ fluxes stimulated by Na+-coupled glucose transport: Evidence for a Ba2+-insensitive K+ efflux pathway in rabbit proximal tubules. J. Membrain Biol. 105, 197–205 (1988). https://doi.org/10.1007/BF01870997

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870997

Key words

Navigation