Skip to main content
Log in

Immunological characterization of rat cardiac gap junctions: Presence of common antigenic determinants in heart of other vertebrate species and in various organs

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Antibodies to the following synthetic peptide, SALGKLLDKVQAY, were purified by affinity chromatography and characterized by ELISA and immunoblotting. These antibodies, shown to be specific to the major protein constitutent of isolated rat heart junctions: connexin 43, cross-reacted with a homologous protein in immunoreplicas of whole heart fractions of trout, frog, chicken, guinea pig, mouse and rat, suggesting a phylogenic conservation of connexin 43 in vertebrates. By immunoblotting of whole organ fractions it was also demonstrated that these antibodies cross-reacted with major proteins ofM r 32 and 22 kD in rat and mouse liver, ofM r 41 kD in rat cerebellum, ofM r 43 kD in uterus, stomach and kidney of rat, ofM r 46 and 70 kD in rat lens, suggesting that these proteins share common or related epitopes with the synthetic peptide and connexin 43.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beyer, E.C., Paul, D.L., Goodenough, D.A. 1987. Connexin 43: A protein from rat heart homologous to a gap junction protein from liver.J. Cell Biol. 105:2621–2623

    Google Scholar 

  • Bok, D., Dockstader, J., Horwitz, J. 1982. Immunocytochemical localization of the lens main intrinsic polypeptide (MIP 26) in communicating junctions.J. Cell Biol. 92:213–220

    Google Scholar 

  • Briand, J.P., Muller, S., Van Regenmortel, M.H.V. 1986. Synthetic peptides as antigens: Pitfalls of conjugation methods.J. Immunol. Meth. 78:59–69

    Google Scholar 

  • Clark, R.K., Tani, Y., Damjanov, I. 1986. Suppression of nonspecific binding of Avidin-Biotin Complex (ABC) to proteins electroblotted onto nitrocellulose paper.J. Histochem. Cytochem. 34:1509–1512

    Google Scholar 

  • Dermietzel, R., Liebstein, A., Frixen, V., Janssen-Timmen, V., Traub, O., Willecke, E. 1984. Gap junctions in several tissues share antigenic determinants with liver gap junctions.EMBO J. 3:2261–2270

    Google Scholar 

  • Dreyffuss, J.J., Girardier, L., Forssmann, W.G. 1966. Etude de la propagation de l'excitation dans le ventricule de rat au moyen de solutions hypertoniques.Pfluegers Arch. 292:13–33 (in French)

    Google Scholar 

  • Fairbanks, G., Steck, J.L., Wallach, D.F.M. 1971. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane.Biochemistry 10:2602–2617

    Google Scholar 

  • Fitzgerald, P., Bock, D., Horwitz, J. 1983. Immunocytochemical localization of the main intrinsic polypeptide (MIP) in ultrathin frozen sections of rat lens.J. Cell Biol. 97:1491–1499

    Google Scholar 

  • Freedman, R.B. 1984. Native disulphide band formation in protein biosynthesis: Evidence for the role of protein disulphide isomerase.Trends Biochem. Sci. 9:438–441

    Google Scholar 

  • Gesdon, J.L., Ternynck, T., Avrameas, S. 1979. The use of Avidin-Biotin interaction in immunoenzymatic techniques.J. Histochem. Cytochem. 27:1131–1139

    Google Scholar 

  • Getzoff, E.D., Geyson, M.H., Rodda, S.T., Allexander, H., Tainer, J.A., Lerner, R.A. 1987. Mechanisms of antibody binding to a protein.Science 235:1191–1196

    Google Scholar 

  • Geyson, M.H., Meloen, R.H., Barteling, S.J. 1984. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino-acid.Proc. Natl. Acad. Sci. USA 81:3998–4002

    Google Scholar 

  • Gilula, N.B., Reeves, O.R., Steinbach, A. 1972. Metabolic coupling, ionic coupling and cell contacts.Nature (London) 235:262–265

    Google Scholar 

  • Green, C.R., Harfst, E., Gourdie, R.G., Severs, N.J. 1988. Analysis of the rat liver gap junction protein: Clarification of anomalies in its molecular size.Proc. R. Soc. London B 233:165–174

    Google Scholar 

  • Green, C.R., Severs, N.J. 1983. A simplified method for the rapid isolation of cardiac intercalated discs.Tissue Cell 15:17–26

    Google Scholar 

  • Gros, D., Nicholson, B.J., Revel, J.P. 1983. Comparative analysis of the gap junction protein from rat and liver: Is there a tissue-specificity of gap junction?Cell 35:539–549

    Google Scholar 

  • Gruitjers, W.T.M., Kistler, J., Bullivant, S., Goodenough, D. 1987. Immunolocalization of MP 70 in lens fiber 16–17 nm intercellular junctions.J. Cell Biol. 104:565–572

    Google Scholar 

  • Henderson, D., Eibl, H., Weber, K. 1979. Structure and biochemistry of mouse hepatic gap junctions.J. Mol. Biol. 132:193–218

    Google Scholar 

  • Hertzberg, E.L. 1984. A detergent-independent procedure for the isolation of gap junctions from rat liver.J. Biol. Chem. 259:9936–9943

    Google Scholar 

  • Hertzberg, E.L., Skibbens, R.U. 1984. A protein homologous to the 27,000 dalton liver gap junction protein is present in a wide variety of species and tissues.Cell 39:61–69

    Google Scholar 

  • Hopp, T.P., Woods, K.R. 1981. Prediction of protein antigenic determinants from amino-acid sequences.Proc. Natl. Acad. Sci. USA 78:3824–2828

    Google Scholar 

  • Imanaga, I., Kameyama, M., Irisawa, H. 1987. Cell-to-cell diffusion of fluorescent dyes in paired ventricular cells.Am. J. Physiol. 252:H223-H232

    Google Scholar 

  • Janssen-Timmen, V., Traub, O., Dermietzel, R., Rabes, H.M., Willecke, K. 1987. Reduced number of gap junctions in rat hepato-carcinomas detected by monoclonal antybody.Carcinogenesis 7:1475–1482

    Google Scholar 

  • Johnson, A., Thorpe, R. 1982. Immunochemistry in Practice. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Johnson, D.A., Gantsch, J.W., Sportsman, J.R., Elder, J.M. 1984. Improved technique utilizing non-fat dry milk for analysis of proteins and nucleic acids transfered to nitrocellulose.Gene. Anal. Techn. 1:3–8

    Google Scholar 

  • Jongsma, H.B., Rook, M.B., Van Ginneken, A.C.G., de Jong, B. de 1988. Cardiac gap junctions: Estimation of the single channel conductance.In: Recent Studies of Ion Transport and Impulse Propagation in Cardiac Muscle. W.R. Giles, editor. pp. 294–303. Alan Liss, New York

    Google Scholar 

  • Kistler, J., Christie, D., Bullivant, S.1988. Homologies between gap junction proteins in lens, heart and liver.Nature (London) 331:721–723

    Google Scholar 

  • Kistler, J., Kirkland, B., Bullivant, S. 1985. Identification of a 70,000 D protein in lens membrane junctional domains.J. Cell Biol. 101:28–35

    Google Scholar 

  • Kumar, N.H., Gilula, N.B. 1986. Cloning and characterization of human and red liver cDNAs coding for a gap junction protein.J. Cell Biol. 103:767–776

    Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T 4.Nature (London) 227:680–685

    Google Scholar 

  • Loewenstein, W.R. 1981. Junctional intercellular communication: The cell-to-cell membrane channel.Physiol. Rev. 61:829–913

    Google Scholar 

  • Lowry, O.H., Nira, J.R., Farr, A.L., Randall, R. 1951. Protein measurement with the Folin-phenol reagent.J. Biol. Chem. 193:264–275

    Google Scholar 

  • Manjunath, C.K., Goings, G.E., Page, E. 1984. Cytoplasmic surface and intramembrane components of rat heart gap junctional proteins.Am. J. Physiol. 246:H865-H875

    Google Scholar 

  • Manjunath, C.K., Goings, G.E., Page, E. 1985. Proteolysis of cardiac gap junctions during their isolation from rat hearts.J. Membrane Biol. 85:159–168

    Google Scholar 

  • Manjunath, C.K., Goings, G.E., Page, E. 1985. Proteolysis of cardiac gap junctions during their isolation from rat hearts.J. Membrane Biol. 85:159–168

    Google Scholar 

  • Manjunath, C.K., Nicholson, B.J., Teplov, D.B., Hood, L.E., Page, E., Revel, J.P. 1987. The cardiac gap junction protein (M r 47,000) has a tissue-specific cytoplasmic domain ofM r 17,000 at its carboxy-terminus.Biochem. Biophys. Res. Commun. 142:228–234

    Google Scholar 

  • Manjunath, C.K., Page, E. 1986. Rat heart gap junctions as disulfide-bonded connexon multimers: Their depolymerization and solibilization in deoxycholate.J. Membrane Biol. 90:43–57

    Google Scholar 

  • Merrifield, R. 1963. Solid-phase peptide synthesis. 1. The synthesis of a tetrapeptide.J. Am. Chem. Soc. 85:2149–2154

    Google Scholar 

  • Nicholson, B.J., Dermietzel, R., Teplov, D.B., Traub, O., Willecke, K., Revel, J.P. 1987. Two homologous protein components of hepatic gap junctions.Nature (London) 329:732–734

    Google Scholar 

  • Nicholson, B.J., Gros, D., Kent, S.B., Hood, L.E., Revel, J.P. 1985. TheM r 28,000 gap junction protein from rat heart and liver are different but related.J. Biol. Chem. 260:6514–6517

    Google Scholar 

  • Nicholson, B.J., Hunkapiller, M.W., Grim, L.B., Hood, L.E., Revel, J.P. 1981. The rat liver gap junction protein: Properties and partial sequence.Proc. Natl. Acad. Sci. USA 78:7594–7598

    Google Scholar 

  • Noma, A., Tsuboi, N. 1987. Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guinea-pig.J. Physiol. (London) 382:193–211

    Google Scholar 

  • Paul, D. 1985. Antibody against liver gap junctions 27 kD protein is tissue-specific and cross-reacts with a 54 kD protein.In: Gap Junction. M.V.L. Bennett and D.C. Spray, editors. pp. 107–122. Cold Spring Harbor Laboratory, Cold Spring Harbor, Maine

    Google Scholar 

  • Paul, D. 1986. Molecular cloning of cDNA for rat liver gap junction protein.J. Cell. Biol. 103:123–134

    Google Scholar 

  • Paul, D., Goodenough, D.A. 1983. Preparation, characterization and localization of antisera against bovine MP 26, an integral protein from lens fiber plasma membrane.J. Cell. Biol. 96:625–632

    Google Scholar 

  • Paul, D., Goodenough, D.A. 1987. A novel gap junction protein present in rat lens fibers.J. Cell Biol. 105:227a

    Google Scholar 

  • Pitts, J.D., Finbow, M.E. 1986. The gap junction.J. Cell Sci. Suppl. 4:239–266

    Google Scholar 

  • Revel, J.P., Karnovsky, M.J. 1967. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver.J. Cell Biol. 33:C7-C10

    Google Scholar 

  • Revel, J.P., Yancey, B.S. 1985. Molecular conformation of the major intrinsic protein of lens fiber membranes: Is it a junction protein?In: Gap Junctions. M.V.L. Bennett and D.C. Spray, editors. pp. 33–49. Cold Spring Harbor Laboratory, Cold Spring Harbor, Maine

    Google Scholar 

  • Roustiau, S., El Aoumari, A.H., Dupont, E., Briand, J.P., Gros, D. 1986. Les jonctions gap du myocarde de rat: Caractérisation d'un anticorps antipeptide spécifique du polypeptide jonctionnel.Biol. Cell. 57:35a(in French)

    Google Scholar 

  • Sas, D.F., Sas, J.M., Johnson, K.R., Menko, S.A., Johnson, R.G. 1985. Junctions between lens fiber cells are labelled with a monoclonal antibody shown to be specific for MP 26.J. Cell Biol. 100:216–225

    Google Scholar 

  • Seshi, B. 1986. Cell blotting: Techniques for staining and microscopical examination of cells blotted on nitrocellulose paper.Anal. Biochem. 157:331–342

    Google Scholar 

  • Sigel, M.B., Sinha, Y.N., Van der Laan, W.P. 1983. Production of antibodies by inoculation into lymph nodes.Meth. Enzymol. 93:3–12

    Google Scholar 

  • Towbin, M., Staehelin, T., Gordon, J. 1979. Electrophoretic transfer of protein from polyacrylamide gels to nitrocellular sheets: Procedure and some applications.Proc. Natl. Acad. Sci. USA 76:4350–4354

    Google Scholar 

  • Traub, O., Janssen-Timmen, U., Drüge, P.M., Dermietzel, R., Willecke, K. 1982. Immunological properties of gap junction protein from mouse liver.J. Cell. Biochem. 19:27–44

    Google Scholar 

  • Veenstra, R.D., Dehaan, R.L. 1986. Measurement of single channel currents from cardiac gap junctions.Science 233:972–974

    Google Scholar 

  • Walter, G., Doolittle, R.F. 1983. Antibodies against synthetic peptides.In: Genetic Engineering: Principles and Methods. J.K. Setlov and A. Hollaender, editors. Vol. 5, pp. 61–91. Plenum, New York

    Google Scholar 

  • Weidmann, S. 1952. The electrical constants of Purkinje fibers.J. Physiol. (London) 118:348–360

    Google Scholar 

  • Weidmann, S. 1966. The diffusion of radiopotassium across intercalated discs of mammalian cardiac muscle.J. Physiol. (London) 187:323–342

    Google Scholar 

  • Young, J.D.E., Cohn, Z.A., Gilula, N.B. 1987. Functional assembly of gap junction conductance in lipid bilayers: Demonstration that the major 27 kD protein forms the junctional channel.Cell 48:733–743

    Google Scholar 

  • Zervos, A.S., Hope, J., Evans, W.H. 1985. Preparation of a gap junction fraction from uteri of pregnant rats: The 28 kD polypeptides uterus, liver and heart gap junctions are homologous.J. Cell Biol. 101:1363–1370

    Google Scholar 

  • Zimmer, D.B., Green, C.R., Evans, H.W., Gilula, N.B. 1987. Topological analysis of the major protein in isolated intact rat liver gap junctions and gap junction-derived single membrane structures.J. Biol. Chem. 262:7751–7763

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupont, E., El Aoumari, A., Roustiau-Sévère, S. et al. Immunological characterization of rat cardiac gap junctions: Presence of common antigenic determinants in heart of other vertebrate species and in various organs. J. Membrain Biol. 104, 119–128 (1988). https://doi.org/10.1007/BF01870924

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870924

Key Words

Navigation