Skip to main content
Log in

cAMP Increases Apical IsK Channel Current and K+ Secretion in Vestibular Dark Cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract.

Adenosine 3′,5′-cyclic monophosphate (cAMP) is known to stimulate exogenous IsK channel current in the Xenopus oocyte expression system. The present study was performed to determine whether elevation of cytosolic cAMP in a native mammalian epithelium known to secrete K+ through endogenously expressed IsK channels would stimulate K+ secretion through these channels. The equivalent short circuit current (I sc ) across vestibular dark cell epithelium in gerbil was measured in a micro-Ussing chamber and the apical membrane current (I IsK ) and conductance (g IsK ) of IsK channels was recorded with both the on-cell macro-patch and nystatin-perforated whole-cell patch-clamp techniques. It has previously been shown that I sc can be accounted for by transepithelial K+ secretion and that the apical IsK channels constitute a significant pathway for K+ secretion. The identification of the voltage-dependent whole-cell currents in vestibular dark cells was strengthened by the finding that a potent blocker of IsK channels, chromanol 293B, strongly reduced I IsK from 646 ± 200 to 154 ± 22 pA (71%) and g IsK from 7.5 ± 2.6 to 2.8 ± 0.4 nS (53%). Cytoplasmic cAMP was elevated by applying dibutyryl cyclic AMP (dbcAMP), or the phosphodiesterase inhibitors 3-isobutyl-1-methylxanthine (IBMX) and Ro-20-1724. dbcAMP (1 mm) increased I sc and I IsK from 410 ± 38 to 534 ± 40 μA/cm2 and from 4.3 ± 0.8 to 11.4 ± 2.2 pA, respectively. IBMX (1 mm) caused transient increases of I sc from 415 ± 30 to 469 ± 38 μA/cm2 and Ro-20-1724 (0.1 mm) from 565 ± 43 to 773 ± 58 μA/cm2. IBMX increased I IsK from 5.5 ± 1.5 to 16.9 ± 5.8 pA in on-cell experiments and from 191 ± 31 to 426 ± 53 pA in whole-cell experiments. The leak conductance due to all non-IsK channel sources did not change during dbcAMP and IBMX while 293B in the presence of dbcAMP reduced I IsK by 84% and g IsK by 62%, similar to unstimulated conditions. These results demonstrate that the cAMP pathway is constitutively active in vestibular dark cells and that the cAMP pathway stimulates transepithelial K+ secretion by increasing IsK channel current rather than by altering another transport pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Author information

Authors and Affiliations

Authors

Additional information

Received: 9 June 1995/Revised: 17 October 1996

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunose, H., Liu, J., Shen, Z. et al. cAMP Increases Apical IsK Channel Current and K+ Secretion in Vestibular Dark Cells . J. Membrane Biol. 156 , 25 –35 (1997). https://doi.org/10.1007/s002329900184

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002329900184

Navigation