Skip to main content
Log in

Effect of temperature on the occluding junctions of monolayers of epithelioid cells (MDCK)

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

In previous works it was demonstrated that the monolayer of MDCK cells behaves as a leaky epithelium where the electrical resistance across reflects the sealing capacity of the occluding junction. In the present work we study whether this sealing capacity can be modified by temperature and whether this is accompanied by changes in the structure of the occluding junction. Monolayers were prepared on disks of nylon cloth coated with collagen and mounted as a flat sheet between two Lucite chambers. The changes in resistance elicited by temperature were large (306% between 3 and 37°C), fast (less than 2 sec), and reversible. An Arrhenius plot of conductance versus the inverse of temperature shows a broken curve (between 22 and 31°C), and the activation energies calculated (3.2 and 4.0 kcal·mol−1) fall within the expected values for processes of simple diffusion. The morphology of the occuluding the number of evaluated in freeze-fracture replicas by counting the number of strands and the width of the band occupied by the junction every 133 nm. In spite of the change by 306% of the electrical resistance and the phase transition, we were unable to detect any appreciable modification of the morphology of the occluding junction. Since the freeze-fracture replicas also show a density of intramembrane particles (IMP) different in the apical from that in the basolateral regions of the plasma membrane, as well as differences between faceE and faceP, we also investigated whether this is modified by temperature. Cold increases the population of IMP, but does not affect their polarization with the incubation time it takes to elicit changes in electrical resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, C.R., Cull-Candy, S.G., Miledi, R. 1977. Potential dependent transition temperature of the ionic channels induced by glutamate in locust muscle.Nature (London) 268:663–665

    Google Scholar 

  • Barry, P.H., Diamond, J.M. 1971. A theory of ion permeation through membranes with fixed neutral sides.J. Membrane Biol. 4:295–330

    Google Scholar 

  • Barry, P.H., Diamond, J.M., Wright, E.M. 1971. The mechanism of cation permeation in rabbit gallbladder: Dilution potentials and biionic potentials.J. Membrane Biol. 4:358–394

    Google Scholar 

  • Bentzel, C.J., Hainau, B., Ho, S., Hui, S.W., Edelman, A. Anagnostopoulos, T., Benedetti, E.L. 1980. Cytoplasmic regulation of tight junctions permeability: Effect of plant cytokinins.Am. J. Physiol. 239:C75-C89

    Google Scholar 

  • Borovjagin, V., Vergara, J., McIntosh, T. 1982. Morphology of the intermediate structures in membrane fusion process and bilayer to hexagonal HII transitions.Biochim. Biophys. Acta 645:262–269

    Google Scholar 

  • Bullivant, S. 1982. Tight junction structure and development.In: The Paracellular Pathway. S.E. Bradley and E.F. Purcell, editors. pp. 13–35. Josiah Macy, Jr., Foundation, New York

    Google Scholar 

  • Cereijido, M., Stefani, E., Chávez de Ramírez, B. 1982. Occluding junctions of theNecturus gallbladder.J. Membrane Biol. 70:15–25

    Google Scholar 

  • Cereijido, M., Meza, I., Martínez-Palomo, A. 1981. Occluding junctions in cultured epithelial monolayers.Am. J. Physiol. 240:C96-C102

    Google Scholar 

  • Cereijido, M. Robbins, E.S., Dolan, W.J., Rotunno, C.A., Sabatini, D.D. 1978a. Polarized monolayers formed by epithelial cells on a permeable and translucent support.J. Cell Biol. 77:853–880

    Google Scholar 

  • Cereijido, M., Rotunno, C.A., Robbins, E.S., Sabatini, D.D. 1978b. Polarized epithelial membrane producedin vitro. Membrane transport processes, Vol. 1. pp. 433–461. J.F. Hoffman, editor. Raven, New York

    Google Scholar 

  • Cereijido, M., Stefani, E., Martínez-Palomo, A. 1980. Occluding junctions in a cultured transporting epithelium: Structural and functional heterogeneity.J. Membrane Biol. 53:19–32

    Google Scholar 

  • Claude, P. 1978. Morphological factors influencing, transepithelial permeability: A model for the resistance of the Zonula Occludens.J. Membrane Biol. 39:219–232

    Google Scholar 

  • De Camilli, P., Peluchetti, D., Meldolesi, J. 1974. Structural difference between luminal and lateral plasmalemma in pancreatic acinar cells.Nature (London) 248:245–246

    Google Scholar 

  • Dreyer, F., Müller, K.D., Peper, K., Sterz, R. 1976. Temperature dependence of ionic channel properties of ACH-receptors at frog and mouse neuromuscular junctions.Pfluegers Arch. 365:R36

    Google Scholar 

  • Duffey, M., Hainau, B., Ho, S., Bentzel, C. 1981. Regulation of epithelial tight junction permeability by cyclic AMP.Nature (London) 294:451–453

    Google Scholar 

  • Fischbach, G.D., Lass, Y. 1978. A transition temperature for acetylcholine channel conductance in chick myoballs.J. Physiol. (London) 280:527–536

    Google Scholar 

  • Fischer, A., Stoeckenius, W. 1977. Freeze-fractured purple membrane particles: Protein content.Science 197:72–74

    Google Scholar 

  • Griepp, E.B., Dolan, W.J., Robbins, E.S., Sabatini, D.D. 1983. Participation of plasma membrane proteins in the formation of tight junctions by cultured epithelial Cells.J. Cell Biol. 96(3):693–702

    Google Scholar 

  • Hoi Sang, U., Saier, M.H., Jr., Ellisman, M.H. 1979. Tight junction formation is closely linked to the polar redistribution of intramembraneous particles in aggregating MDCK epithelia.Exp. Cell Res. 122:384–392

    Google Scholar 

  • Hoi Sang, U., Saier, M. H., Ellisman, M. H. 1980. Tight junction formation in the establishment of intramembranous particle polarity in aggregating MDCK cells.Exp. Cell Res. 128:223–235

    Google Scholar 

  • Hong, K., Hubbell, W.L., 1972. Preparation and properties of phospholipid bilayers containing rhodopsin.Proc. Natl. Acad. Sci. USA 69:2617–2621

    Google Scholar 

  • Hope, M.J., Walker, D.C., Cullis, P.R. 1983. Ca2+ and pH induced fusion of small unilamillar vesicles consisting of phophatidylethanolamine and negatively charged phospholipids: A freeze-fracture study.Biochem. Biophys. Res. Commun. 110(1):15–22

    Google Scholar 

  • Hudspeth, A.J. 1975. Establishment of tight junctions between epithelial cells.Proc. Natl. Acad. Sci. USA 72(7):2711–2713

    Google Scholar 

  • Humbert, F., Montesano, R., Perrelet, A., Orci, L. 1976. Junctions in developing human and rat kidney: A freeze-fracture study.J. Ultrastruct. Res. 56:202–214

    Google Scholar 

  • Jähnig, F., Bramhall, J. 1982. The origin of a break in Arrhenius plots of membrane processes.Biochim. Biophys. Acta 690:310–313

    Google Scholar 

  • Kachar, B., Pinto da Silva, P. 1981. Rapid massive assembly of tight junction strands.Science 213:541–544

    Google Scholar 

  • Kachar, B., Reese, T. 1982. Evidence for the lipidic nature of tight junction strands.Nature (London) 296:64–66

    Google Scholar 

  • Kniffki, R.O., Siemen, D., Vogel, W. 1981. Development of sodium permeability inactivation in nodal membranes.J. Physiol. (London) 313:37–48

    Google Scholar 

  • Lagarde, S., Elias, E., Wade, J., Boyer, L. 1981. Structural heterogeneity of hepatocyte “tight” junctions: A quantitative analysis.Hepatology,1:193–203

    Google Scholar 

  • Leech, C.A., Stanfield, P.K. 1981. Inward rectification in frog skeletal muscle fibers and its dependence on membrane potential and external potassium.J. Physiol. (London) 319:295–309

    Google Scholar 

  • Luzzati, V., Husson, F. 1962. The structure of the liquid crystalline phases of lipid water systems.J. Cell Biol. 12:207–219

    Google Scholar 

  • Madin, S.H., Darby, N.B. 1958.As catalogued in: American Type Culture Collection Catalogue of Strains. Vol. 2, pp 574–576. R. Hay et al., editors. Rockville, Maryland

  • Margolios, L., Neyfakh, A., Bergelson, L., Vasiliev, J. 1982. Interaction of solid liposomes with epithelial cells.Cell Biol. Int. Rep. 6(2):131–136

    Google Scholar 

  • Martínez-Palomo, A., Erlij, D. 1975. Structure of tight junctions in epithelia with different permeability.Proc. Natl. Acad. Sci. USA 72:4487–4491

    Google Scholar 

  • Martínez-Palomo, A., Meza, I., Beaty, G., Cereijido, M. 1980. Experimental modulation of occluding junctions in a cultured transporting epithelium.J. Cell Biol. 87:736–745

    Google Scholar 

  • Meldolesi, J., Castiglioni, G., Parma, R., Nassivera, N., De Camilli, P. 1978. Ca++-dependent disassembly and reassemby of occluding junctions in guinea pig pancreatic acinar cells: Effect of drugs.J. Cell Biol. 79:156–172

    Google Scholar 

  • Misfeldt, D.S., Hamamoto, S.T., Pitelka D.K. 1976. Transepithelial transport in cell culture.Proc. Natl. Acad. Sci. USA 73:1212–1216

    Google Scholar 

  • Møllgård, K., Malinowska, D.H., Saunders, N.R. 1976. Lack of correlation between tight junction morphology and permeability properties in developing choroid plexus.Nature (London) 264:293–294

    Google Scholar 

  • Montesano, R., Friend, D.S., Perrelet, A., Orci, L. 1975.In vivo assembly of tight junctions in fetal rat liver.J. Cell Biol. 67:310–319

    Google Scholar 

  • Moreno, J.H., Diamond, J.M. 1975. Nitrogenous cations as probes of permeation channels.J. Membrane Biol.,21:197–259

    Google Scholar 

  • Morgan, G., Wooding, F.B. 1982. A freeze-fracture study of tight junction structure in sheep mammary gland epithelium during pregnancy and lactation.J. Dairy Res. 49:1–11

    Google Scholar 

  • Murphy, C., Swift, J., Mukherjee, T., Rogers, A. 1982a. The structure of tight junctions between uterine luminal epithelial cells at different stages of pregnancy in the rat.Cell Tissue Res. 223:281–286

    Google Scholar 

  • Murphy, C., Swift, J., Need, J., Mukherjee, T., Roger, A. 1982b. A freeze-fracture electron microscopic study of tight junction of epithelial cells in the human uterus.Anat. Embryol. 163:367–370

    Google Scholar 

  • Mutoh, H. 1981. Freeze replica observation of the junction structures in the guinea-pig liver after bile duct ligation and recanalization.Arch. Histol. Jpn. 44(4):345–367

    Google Scholar 

  • Ojakian, G.K. 1981. Tumor promoter-induced changes in the permeability of epithelial cell tight junction.Cell 23:95–103

    Google Scholar 

  • Pinto da Silva, P., Kachar, B. 1982. On tight junction structure.Cell 28:441–450

    Google Scholar 

  • Pitelka, D.R., Hamamoto, S.T., Duafala, J.G., Nemanic, M.K. 1973. Cell contacts in the mouse mammary gland: I. Normal gland in postnatal development and the secretory cycle.J. Cell Biol. 56:797–818

    Google Scholar 

  • Pitelka, D.R., Taggart, B.N. 1983. Mechanical tension induces lateral movement of intramembrane components of the tight junction: Studies on mouse mammary cells in culture.J. Cell Biol. 96:606–612

    Google Scholar 

  • Pitelka, D.R., Taggart, B.N., Hamamoto, S.T. 1983. Effects of extracellular calcium depletion on membrane topography and occluding junctions of mammary epithelial cells in cultureJ. Cell Biol. 96(3):613–624

    Google Scholar 

  • Polak-Charcon, S., Shoham, J., Ben-Shaul, Y. 1978. Junction formation in trypsinized cells of human adenocarcinoma cell line.Exp. Cell. Res. 116:1–13

    Google Scholar 

  • Rabito, C.A., Tchao, R., Valentich, J., Leighton, J. 1978. Distribution and characteristics of the occluding junctions in a monolayer of a cell line (MDCK) derived from canine kidney.J. Membrane Biol. 43:351–365

    Google Scholar 

  • Schiller, A., Taugner, R. 1982. Heterogeneity of tight junctions along the collecting duct in the renal medulla: A freeze-fracture study in rat and rabbit.Cell Tissue Res. 223:603–614

    Google Scholar 

  • Schwarz, W. 1979. Temperature experiments on nerve and muscle membranes of frogs: Indications for a phase transition.Fluegers Arch. 382:27–34

    Google Scholar 

  • Stefani, E., Cereijido, M. 1983. Electrical properties of cultured epithelioid cells (MDCK).J. Membrane Biol. 73:177–184

    Google Scholar 

  • Suzuki, F., Nagano, T. 1979. Morphogenesis of tight junctions in the peritoneal mesothelium of the mouse embryo.Cell Tissue Res. 198:247–260

    Google Scholar 

  • Tadvalkar, G., Pinto da Silva, P., 1983.In vitro rapid assembly of gap junctions is induced by cytoskeleton disruptors.J. Cell Biol. 96:1279–1287

    Google Scholar 

  • Tice, L.W., Carter, R.L., Cahill, M.C. 1977. Tracer and freeze-fracture observations on developing tight junctions in fetal rat thyroid.Tissue Cell. 9(3):395–417

    Google Scholar 

  • Van Deurs, B., Luft, J.H. 1979. Effects of glutaraldehyde fixation on the structure of tight junctions: A quantitative freeze-fracture analysis.J. Ultrastruc. Res. 68:160–172

    Google Scholar 

  • Van Venetie, R., Verkleij, A.J. 1981. Analysis of the Hexagonal II phase and its relations to lipidic particles and the lamellar phase: A freeze-fracture study.Biochim. Biophys. Acta 645:262–269

    Google Scholar 

  • Verkleij, A., Van Echteld, C., Gerristen, W., Cullis, P., De Kriuff, B. 1980. The lipidic particle as an intermediate structure in membrane fusion processes and bilayer to hexagonalH II transitions.Biochim. Biophys. Acta 645:262–269

    Google Scholar 

  • Wade, J.B., Karnovsky, M.J. 1974. Fracture faces of osmotically disrupted zonulae occludentes.J. Cell Biol. 62:344–350

    Google Scholar 

  • Wright, E.M., Barry, P.H., Diamond, J.M. 1971. The mechanism of cation permeation in rabbit gallbladder.J. Membrane Biol. 4:331–357

    Google Scholar 

  • Yancey, S.B., Caster, D., Revel, J. 1979. Cytological changes in gap junctions during liver regeneration.J. Ultrastruct. Res. 67:229–242

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Mariscal, L., Chávez de Ramírez, B. & Cereijido, M. Effect of temperature on the occluding junctions of monolayers of epithelioid cells (MDCK). J. Membrain Biol. 79, 175–184 (1984). https://doi.org/10.1007/BF01872121

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872121

Key Words

Navigation