Skip to main content
Log in

The AQP2 water channel: Effect of vasopressin treatment, microtubule disruption, and distribution in neonatal rats

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Aquaporin 2 is a collecting duct water channel that is located in apical vesicles and in the apical plasma membrane of collecting duct principal cells. It shares 42% identity with the proximal tubule/thin descending limb water channel, CHIP28. The present study was aimed at addressing three questions concerning the location and behavior of the AQP2 protein under different conditions. First, does the AQP2 channel relocate to the apical membrane after vasopressin treatment? Our results show that AQP2 is diffusely distributed in cytoplasmic vesicles in collecting duct principal cells of homozygous Brattleboro rats that lack vasopressin. In rats injected with exogenous vasopressin, however, AQP2 became concentrated in the apical plasma membrane of principal cells, as determined by immunofluorescence and immunogold electron microscopy. This behavior is consistent with the idea that AQP2 is the vasopressin-sensitive water channel. Second, is the cellular location of AQP2 modified by microtubule disruption? In normal rats, AQP2 has a mainly apical and subapical location in principal cells, but in colchicine-treated rats, it is distributed on vesicles that are scattered throughout the entire cytoplasm. This is consistent with the dependence on microtubules of apical protein targeting in many cell types, and explains the inhibitory effect of microtubule disruption on the hydroosmotic response to vasopressin in sensitive epithelia, including the collecting duct. Third, is AQP2 present in neonatal rat kidneys? We show that AQP2 is abundant in principal cells from neonatal rats at all days after birth. The detection of AQP2 in early neonatal kidneys indicates that a lack of this protein is not responsible for the relatively weak urinary concentrating response to vasopressin seen in neonatal rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achler, C., Filmer, D., Merte, C., Drenckhahn, D. 1989. Role of microtubules in polarized delivery of apical membrane proteins to the brush border of the intestinal epithelium. J. Cell Biol. 109:179–189

    Google Scholar 

  • Biber, J., Steiger, B., Haase, W., Murer, H. 1981. A high yield preparation for rat kidney brush border membranes. Different behaviour of lysosomal markers. Biochim. Biophys. Acta 647:169–176

    Google Scholar 

  • Brown, D. 1991. Structural-functional features of vasopressin-induced water flow in the kidney collecting duct. Sem. Nephrol. 11:478–501

    Google Scholar 

  • Brown, D., Sabolić, L, Gluck, S. 1991. Colchicine-induced redistribution of proton pumps in the proximal tubule. Kidney Int. 40(Suppl. 33):S79-S83

    Google Scholar 

  • Busson-Mabillot, S., Chambut-Guerin, A-M., Ovtracht, L., Muller, P., Rossignol, B. 1982. Microtubules and protein secretion in rat lachrymal glands: localization of short-term effects of colchicine on the secretory process. J. Cell Biol. 95:105–117

    Google Scholar 

  • De Almeida, J.B., Stow, J. 1991. Disruption of microtubules alters polarity of basement membrane proteoglycan secretion in epithelial cells. Am. J. Physiol. 260:C691-C700

    Google Scholar 

  • Deen, P.M.T., Verdijk, M.A.J., Knoers, N.V.A.M., Wieringa, B., Monnens, L.A.H., van Os, C.H., van Oost, B.A. 1994. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264:92–95

    Google Scholar 

  • Dousa, T.P., Barnes, L.D. 1974. Effects of colchicine and vinblastine on the cellular action of vasopressin in the mammalian kidney. A possible role of microtubules. J. Clin. Invest. 54:252–262

    Google Scholar 

  • Dousa, T.P., Valtin, H. 1976. Cellular actions of vasopressin in the mammalian kidney. Kidney Int. 10:46–63

    Google Scholar 

  • Dratwa, M., Tisher, C.C. 1979. Effect of hypertonicity and colchicine on intramembranous particle aggregation in toad bladder. Cell Tissue Res. 196:263–269

    Google Scholar 

  • Ercolani, L., Schultz, W.E. 1983. Metabolic and morphologic effects of colchicine on human T lymphocyte expression of FcM and FcG receptors. Cell. Immunol. 77:222–232

    Google Scholar 

  • Fejes-Toth, G., Naray Fejes-Toth, A. 1992. Differentiation of renal beta-intercalated cells to alpha-intercalated and principal cells in culture. Proc. Natl. Acad. Sci. USA 89:5487–5491

    Google Scholar 

  • Fushimi, K., Uchida, S., Hara, Y., Hirata, Y., Marumo, F., Sasaki, S. 1993. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361:549–552

    Article  CAS  PubMed  Google Scholar 

  • Gutmann, E.J., Niles, J.L., McCluskey, R.T., Brown, D. 1989. Colchicine-induced redistribution of an endogenous apical membrane glycoprotein (gp 330) in kidney proximal tubule epithelium. Am. J. Physiol. 257:C397-C407

    Google Scholar 

  • Harris, H.W., Jr., Strange, K., Zeidel, M.L. 1991. Current understanding of the cellular biology and molecular structure of the antidiuretic hormone-stimulated water transport pathway. J. Clin. Invest. 88:1–8

    Google Scholar 

  • Harris, H.W., Jr., Zeidel, M.L., Jo, I., Hammond, T.G. 1994. Characterization of purified endosomes containing the antidiuretic hormone-sensitive water channel from rat renal papilla. J. Biol. Chem. 269:11993–12000

    Google Scholar 

  • Hasegawa, H., Watanabe, K., Nakamura, T., Nagura, H. 1987. Immunocytochemical localization of alkaline phosphatase in absorptive cells of rat small intestine after colchicine treatment. Cell Tissue Res. 250:521–529

    Google Scholar 

  • Horster, M.F., Zink, H. 1982. Functional differentiation of the medullary collecting tubule: influence of vasopressin. Kidney Int. 22:360–365

    Google Scholar 

  • Ishibashi, K. Sasaki, S., Fushimi, K., Uchida, S., Kuwahara, M., Saito, H., Furukawa, T., Nakajima, K., Yamaguchi, Y., Gojobori, T., Marumo, F. 1994. Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc. Natl. Acad. Sci. USA 91:6269–6273

    CAS  PubMed  Google Scholar 

  • Kachadorian, W.A., Ellis, S.J., Muller, J. 1979. Possible roles for microtubules and microfilaments and ADH action on toad urinary bladder. Am. J. Physiol. 236:F14-F20

    Google Scholar 

  • Lencer, W.I., Brown, D., Ausiello, D.A., Verkman, A.S. 1990. Endocytosis of water channels in rat kidney: cell specificity and correlation with in vivo antidiuresis. Am. J. Physiol. 259:C290-C932

    Google Scholar 

  • Malaisse-Lagae, F., Amherdt, M., Ravazzola, M., Sener, A., Hutton, J.C., Orci, L., Malaisse, W.J. 1979. Role of microtubules in the synthesis, conversion and release of proinsulin. A biochemical and autoradiographic study in rat islets. J. Clin. Invest. 63:1284–1296

    Google Scholar 

  • McLean, I. W., Nakane, P.F. 1974. Periodate-lysine paraformaldehyde fixative: a new fixative for immunoelectron microscopy. J. Histochem. Cytochem. 22:1077–1083

    Google Scholar 

  • Nielsen, S., DiGiovanni, S.R., Christensen, E.I., Knepper, M.A., Harris, H.W. 1993a. Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc. Natl. Acad. Sci. USA 90:11663–11667

    CAS  PubMed  Google Scholar 

  • Nielsen, S., Smith, B.L., Christensen, E.I., Agre, P. 1993b. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc. Natl. Acad. Sci. USA 90:7275–7279

    Google Scholar 

  • Nielsen, S., Smith, B.L., Christensen, E.I., Knepper, M.A., Agre, P. 1993c. CHIP28 water channels are localized in constitutively water permeable segments of the nephron. J. Cell Biol. 120:371–383

    Google Scholar 

  • Ojakian, G.K., Schwimmer, R. 1988. The polarized distribution of an apical cell surface glycoprotein is maintained by interactions with the cytoskeleton of Madin-Darby canine kidney cells. J. Cell Biol. 107:2377–2387

    Google Scholar 

  • Orci, L., Le Marchand, Y., Singh, A., Assimacopoulos-Jeannet, F., Rouiller, C., Jeanreneaud, B. 1973. Role of microtubules in lipoprotein secretion by the liver. Nature 244:30–32

    Google Scholar 

  • Patzelt, C., Brown, D., Jeanrenaud, B. 1977. Inhibitory effect of colchicine on amylase secretion by rat parotid glands. Possible localization in the Golgi area. J. Cell Biol. 73:578–593

    Google Scholar 

  • Pavelka, M., Ellinger, A., Gangl, A. 1983. Effect of colchicine on rat small intestinal adsorptive cells I. Formation of basolateral microvillus borders. J. Ultrastruct. Res. 85:249–259

    Google Scholar 

  • Phillips, M.E., Taylor, A. 1989. Effect of nocodazole on the water permeability response to vasopressin in rabbit collecting tubules in vitro. J. Physiol. 411:529–544

    Google Scholar 

  • Preston, G.M., Agre, P. 1991. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc. Natl. Acad. Sci. 88:11110–11114

    Google Scholar 

  • Rajerison, R.M., Butlen, D., Jard, S. 1976. Ontogenic development of antidiuretic hormone receptors in rat kidney: comparison of hormonal binding and adenylate cyclase activation. Mol. Cell. Endocrinol. 4:271–285

    Google Scholar 

  • Sabolić, I., Burckhardt, G. 1990. ATP-driven proton transport in vesicles from the kidney cortex. In: Methods Enzymol. S. Fleischer and B. Fleischer, editors. 505–520. Academic Press, New York

    Google Scholar 

  • Sabolić, I., Valenti, G., Verbavatz, J.-M., Van Hoek, A.N., Verkman, A.S., Ausiello, D.A., Brown, D. 1992a. Localization of the CHIP28 water channel in rat kidney. Am. J. Physiol. 263:C1225-C1233

    Google Scholar 

  • Sabolić, I., Wuarin, F., Shi, L-B., Verkman, A.S., Ausiello, D.A., Gluck, S., Brown, D. 1992b. Apical endosomes isolated from kidney collecting duct principal cells lack subunits of the proton pumping ATPase. J. Cell Biol. 119:111–122

    Google Scholar 

  • Scalera, V., Huang, Y.K., Hildman, B., Murer, H. 1981. A simple isolation method for basal-lateral plasma membranes from rat kidney cortex. Membr. Biochem. 4:49–64.

    Google Scholar 

  • Schlondorff, D., Weber, H., Trizna, W., Fine, L.G. 1978. Vasopressin responsiveness of renal adenylate cyclase in newborn rats and rabbits. Am. J. Physiol. 234:F16-F21

    Google Scholar 

  • Slot, J.W., Geuze, H.J. 1985. A new method for preparing gold probes for multiple labeling cytochemistry. Eur. J. Cell Biol. 38:87–93

    Google Scholar 

  • Smith, B.L., Baumgarten, R., Nielsen, S., Raben, D., Zeidel, M.L., Agre, P. 1993. Concurrent expression of erythroid and renal aquaporin CHIP and appearance of water channel activity in perinatal rats. J. Clin. Invest. 92:2035–2041

    Google Scholar 

  • Spitzer, A., Schwartz, G.J. 1992. The kidney during development. In: Handbook of Physiology, Renal Physiology. E.E. Windhager, editors. pp. 475–544 Oxford University Press, New York

    Google Scholar 

  • Stetson, D.L., Steinmetz, P.R. 1983. Role of membrane fusion in CO2 stimulation of proton secretion by turtle bladder. Am. J. Physiol. 245:C113-C120.

    Google Scholar 

  • Valenti, G., Hugon, J.S., Bourguet, J. 1988. To what extent is micro-tubular network involved in antidiuretic response? Am. J. Physiol. 255:F1098-F1106

    Google Scholar 

  • Valenti, G., Verbavatz, J.-M., Sabolic, I., Ausiello, A.S., Verkman, A.S., Brown, D. 1994. A CHIP28/MIP26-related protein (BLIP) in basolateral membranes of kidney collecting duct principal cells and gastric parietal cells. Am. J. Physiol. 267:C812-C820.

    Google Scholar 

  • Van Hoek, A.N., Verkman, A.S. 1992. Functional reconstitution of the isolated erythrocyte water channel CHIP28. J. Biol. Chem. 267:18267–18269

    Google Scholar 

  • van Zeijl, M.J., Matlin, K.S. 1990. Microtubule perturbation inhibits intracellular transport of an apical membrane glycoprotein in a substrate-dependent manner in polarized Madin-Darby canine kidney epithelial cells. Cell Regul. 1:921–936

    Google Scholar 

  • Verbavatz, J.-M., Van Hoek, A.N., Ma, T., Sabolic, I., Valenti, G., Ellisman, M.H., Ausiello, D.A., Verkman, A.S., Brown, D. 1994. A 28 kD sarcolemmal antigen in kidney principal cell basolateral membranes: relationship to orthogonal arrays and MIP26. J. Cell Sci. 107:1083–1094

    Google Scholar 

  • Verkman, A.S. 1992. Water channels in cell membranes. Ann. Rev. Physiol. 54:97–106

    Google Scholar 

  • Wade, J.B., Stetson, D.L., Lewis, S.A. 1981. ADH action: evidence for a membrane shuttle mechanism. Ann. N.Y. Acad. Sci. 372:106–117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We thank Robert Tyszkowski, John Lydon and Margaret McLaughlin for excellent technical help and photographic work. We thank Dr. Steven Gluck for kindly providing the monoclonal antibody against the proton pumping ATPase 31 kD subunit. Supported by NIH grants DK 38452 and DK 42956.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabolić, I., Katsura, T., Verbavatz, JM. et al. The AQP2 water channel: Effect of vasopressin treatment, microtubule disruption, and distribution in neonatal rats. J. Membarin Biol. 143, 165–175 (1995). https://doi.org/10.1007/BF00233445

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00233445

Key words

Navigation