Skip to main content
Log in

Plasmalemmal, voltage-dependent ionic currents from excitable pulvinar motor cells ofMimosa pudica

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Plasmalemmal ionic currents from excitable motor cells of the primary pulvinus ofMimosa pudica were investigated by patch-clamp techniques. In almost all of the enzymatically isolated protoplasts, a delayed rectifier potassium current was activated by depolarization, while no currents were detected upon hyperpolarization. This sustained outward current was reversibly blocked by Ba and TEA and serves to repolarize the membrane potential. Outward single channel currents that very likely underly the macroscopic outward potassium current had an elementary conductance of ≈20 pS. In addition, in a few protoplasts held at hyperpolarized potentials, depolarization-activated transient inward currents were observed, and under current clamp, action potential-like responses were triggered by depolarizing current injections or by mechanical perturbations. The activation characteristics of both inward currents and spikes showed striking similarities compared to those of action potentialsin situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, T., Oda, K. 1976. Resting and action potentials of excitable cells in the main pulvinus ofMimosa pudica.Plant Cell Physiol. 17:1343–1346

    Google Scholar 

  • Beilby, M.J. 1982. Cl channels inChara.Philos. Trans. R. Soc. Lond. B 299:435–455

    Google Scholar 

  • Byerly, L., Meech, R., Moody, W. 1984. Rapidly activating hydrogen ion currents in perfused neurones of the snailLymnaea stagnalis.J. Physiol. 351:199–216

    PubMed  Google Scholar 

  • Cosgrove, D.J., Hedrich, R. 1991. Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells ofVicia faba L.Planta 186:143–153

    Article  PubMed  Google Scholar 

  • Fairley, K., Laver, D., Walker, N.A. 1991. Whole-cell and singlechannel currents across the plasmalemma of corn shoot suspension cells.J. Membrane Biol. 121:11–22

    Article  Google Scholar 

  • Fairley-Grenot, K.A., Assmann, S.M. 1992. Whole-cell K current across the plasma membrane of guard cells from a grass:Zea mays.Planta 186:282–293

    Article  Google Scholar 

  • Falke, L.C., Edwards, K.L., Pickard, B.G., Misler, S.A. 1988. A stretch-activated anion channel in tobacco protoplasts.FEBS Lett. 237:141–144

    Article  PubMed  Google Scholar 

  • Fleurat-Lessard, P., Roblin, G. 1982. Comparative histocytology of the petiole and the main pulvinus inMimosa pudica L.Ann. Bot. 50:83–92

    Google Scholar 

  • Fleurat-Lessard, P., Roblin, G., Bonmort, J., Besse, C. 1988. Effects of colchicine, vinblastine, cytochalasin B and phalloidin on the seismonastic movement ofMimosa pudica leaf and on motor cell ultrastructure.J. Exp. Bot. 39:209–221

    Google Scholar 

  • Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J. 1981. Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches.Pfluegers Arch. 391:85–100

    Article  Google Scholar 

  • Hedrich, R., Schroeder, J.I. 1989. The physiology of ion channels and electrogenic pumps in higher plants.Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:539–569

    Article  Google Scholar 

  • Hedrich, R., Busch, H., Raschke, K. 1990a. Ca2+ and nucleotide dependent anion channels in the plasma membrane of guard cells.EMBO J. 9:3889–3892

    PubMed  Google Scholar 

  • Hedrich, R., Stoeckel, H., Takeda, K. 1990b. Electrophysiology of the plasma membrane of higher plant cells: new insights from patch-clamp studies.In: The Plant Plasma Membrane. C. Larsson and I.M. Moller, editors. pp. 182–202. Springer Verlag, Berlin

    Google Scholar 

  • Hill, B.S., Findlay, G.P. 1981. The power of movement in plants: the role of osmotic machines.Quart. Rev. Biophys. 14:173–222

    Google Scholar 

  • Hille, B. 1992. Ionic Channels of Excitable Membranes (2nd Ed.). Sinauer Assoc., Sunderland, MA

    Google Scholar 

  • Hodick, D., Sievers, A. 1988. The action potential ofDionaea muscipula Ellis.Planta 174:8–18

    Article  Google Scholar 

  • Iijima, T., Hagiwara, S. 1987. Voltage-dependent K channels in protoplasts of traplobe cells ofDionaea muscipula.J. Membrane Biol. 100:73–81

    Article  Google Scholar 

  • Iijima, T., Sibaoka, T. 1985. Membrane potentials in excitable cells ofAldrovanda vesiculosa trap lobes.Plant Cell Physiol. 26:1–13

    Google Scholar 

  • Julien, J.L., Desbiez, M.O., De Jaegher, G., Frachisse, J.M. 1991. Characteristics of the wave of depolarization induced by wounding inBidens pilosa L.J. Exp. Bot. 42:131–137

    Google Scholar 

  • Kado, R.T., Kurkdjian, A., Takeda, K. 1986. Transport mechanisms in plant cell membranes: an application for the patch clamp technique.Physiol. Vég. 24:227–244

    Google Scholar 

  • Keller, B.U., Hedrich, R., Raschke, K. 1989. Voltage-dependent anion channels in the plasma membrane of guard cells.Nature 341:450–453

    Article  Google Scholar 

  • Ketchum, K.A., Poole, R.J. 1990. Pharmacology of the Cal2+-dependent K+ channel in corn protoplasts.FEBS Lett. 274:115–118

    Article  PubMed  Google Scholar 

  • Ketchum, K.A., Poole, R.J. 1991. Cytosolic calcium regulates a potassium current in corn (Zea mays) protoplasts.J. Membrane Biol. 119:277–288

    Article  Google Scholar 

  • Kumon, K., Suda, S. 1984. Ionic fluxes from pulvinar cells during the rapid movement ofMimosa pudica L.Plant Cell Physiol. 25:975–979

    Google Scholar 

  • Lunevsky, V.Z., Zherelova, O.M., Vostrikov, I.Y., Berestovsky, G.N. 1983. Excitation ofCharaceae cell membranes as a result of activation of calcium and chloride channels.J. Membrane Biol. 72:43–58

    Article  Google Scholar 

  • MacRobbie, E.A.C. 1988. Control of ion fluxes in stomatal guard cells.Bot. Acta 101:140–148

    Google Scholar 

  • Moran, N. 1991. Stretch-activated channels in the plasma membrane of plant motor cells.Biophys. J. 59:456a

    Google Scholar 

  • Moran, N., Satter, R.L. 1989. Depolarization-activated inward currents in motor cells ofSamanea saman.Plant Physiol. 89:S45

    Google Scholar 

  • Moran, N., Ehrenstein, G., Iwasa, K., Mischke, C., Bare, C., Satter, R.L. 1988. Potassium channels in motor cells ofSamanea saman—a patch clamp study.Plant Physiol. 88:643–648

    Google Scholar 

  • Moran, N., Fox, D., Satter, R.L. 1990. Interaction of the depolarization-activated K+ channels inSamanea saman with inorganic ions.Plant Physiol. 94:424–431

    Google Scholar 

  • Mullins, L.J. 1962. Efflux of chloride ions during the action potential ofNitella.Nature 196:986–987

    PubMed  Google Scholar 

  • Okazaki, Y., Tazawa, M. 1990. Calcium ion and turgor regulation in plant cells.J. Membrane Biol. 114:189–194

    Article  Google Scholar 

  • Okihara, K., Ohkawa, T., Tsutsui, I., Kasai, M. 1991. A Ca2+- and voltage-dependent Cl-sensitive anion channel in theChara plasmalemma: a patch-clamp study.Plant Cell Physiol. 32:593–601

    Google Scholar 

  • Pelissier, B., Thibaud, J.B., Grignon, C., Esquerré-Tugayé, M.T. 1986. Cell surfaces in plant-microorganism interactions, VII. Elicitor preparations from two fungal pathogens depolarize plant membranes.Plant Sci. 46:103–109

    Article  Google Scholar 

  • Pickard, B.G. 1973. Action potentials in higher plants.Bot. Rev. 39:172–201

    Google Scholar 

  • Roblin, G. 1979.Mimosa pudica: a model for the study of the excitability in plants.Biol. Rev. 54:135–153

    Google Scholar 

  • Roblin, G., Fleurat-Lessard, P. 1987. Redistribution of potassium, chloride and calcium during the gravitropically induced movement ofMimosa pudica pulvinus.Planta 170:242–248

    Article  Google Scholar 

  • Samejima, M., Sibaoka, T. 1980. Changes in the extracelluiar ion concentration in the main pulvinus ofMimosa pudica during rapid movement and recovery.Plant Cell Physiol. 21:467–479

    Google Scholar 

  • Samejima, M., Sibaoka, T. 1982. Membrane potentials and resistances of excitable cells in the petiole and main pulvinus ofMimosa pudica.Plant Cell Physiol. 23:459–465

    Google Scholar 

  • Samejima, M., Sibaoka, T. 1983. Identification of the excitable cells in the petiole ofMimosa pudica by intracellular injection of Procion Yellow.Plant Cell Physiol. 24:33–39

    Google Scholar 

  • Satter, R.L. 1979. Leaf movement and tendril curling.In: Encyclopedia of Plant Physiology. W. Haupt & M.E. Feinleib, editors. New Series, Vol. 7, pp. 442–484. Springer Verlag, Berlin

    Google Scholar 

  • Satter, R.L., Morse, M.J., Lee, Y., Crain, R.C., Cote, G.G., Moran, N. 1988. Light- and clock-controlled leaflet movements inSamanea saman: A physiological, biophysical and biochemical analysis.Bot. Acta 101:205–213

    Google Scholar 

  • Schauf, C.L., Wilson, K.J. 1987. Properties of single K+ and Clchannels inAsclepias tuberosa protoplasts.Plant Physiol. 85:413–418

    Google Scholar 

  • Schroeder, J.I. 1988. K+ transport properties of K+ channels in the plasma membrane ofVicia faba guard cells.J. Gen. Physiol. 92:667–683

    Article  PubMed  Google Scholar 

  • Schroeder, J.I. 1989. Quantitative analysis of outward rectifying K channel currents in guard cell protoplasts fromVicia faba.J. Membrane Biol. 107:229–235

    Article  Google Scholar 

  • Schroeder, J.I., Hagiwara, S. 1989. Cytosolic calcium regulates ion channels in the plasma membrane ofVicia faba guard cells.Nature 338:427–430

    Article  Google Scholar 

  • Schroeder, J.I., Hedrich, R. 1989. Involvement of ion channels and active transport in osmoregulation and signalling of higher plant cells.Trends Biochem. Sci. 14:187–192

    Article  PubMed  Google Scholar 

  • Schroeder, J.I., Raschke, K., Neher, E. 1987. Voltage-dependence of K+ channels in guard cell protoplasts.Proc. Natl. Acad. Sci. USA 84:4108–4112

    Google Scholar 

  • Shiina, T., Tazawa, M. 1987. Ca2+-activated Cl-channel in plasmalemma ofNitellopsis obtusa.J. Membrane Biol. 99:137–146

    Article  Google Scholar 

  • Shimmen, T., Tazawa, M. 1980. Intracellular chloride and potassium ions in relation to excitability ofChara membrane.J. Membrane Biol. 55:23–232

    Article  Google Scholar 

  • Sibaoka, T. 1962. Excitable cells inMimosa.Science 137:236

    Google Scholar 

  • Sibaoka, T. 1969. Physiology of rapid movements in higher plants.Annu. Rev. Plant Physiol. 20:165–184

    Article  Google Scholar 

  • Stoeckel, H., Takeda, K. 1989a. Calcium-activated, voltage-dependent, non-selective cation currents in endosperm plasma membrane from higher plants.Proc. R. Soc. Lond. B 237:213–231.

    Google Scholar 

  • Stoeckel, H., Takeda, K. 1989b. Voltage-activated, delayed rectifier K+ current from pulvinar protoplasts ofMimosa pudica.Pfluegers Arch. 414 (Suppl. 1):S150-S151

    Article  Google Scholar 

  • Stoeckel, H., Takeda, K. 1990. Are ion channels involved in the perception of stimuli and signal transduction? New perspectives offered by the patch-clamp technique.In: Intra- and Intercellular Communications in Plants. B. Millet and H. Greppin editors. pp. 13–27. INRA, Paris

    Google Scholar 

  • Takeda, K., Kurkdjian, A.C., Kado, R.T. 1985. Ionic channels, ion transport and plant cell membranes: potential applications of the patch-clamp technique.Protoplasma 127:147–162

    Article  Google Scholar 

  • Tazawa, M., Kishimoto, U., Kikuyama, M. 1974. Potassium, sodium and chloride in the protoplasm ofCharaceae.Plant Cell Physiol. 15:103–110

    Google Scholar 

  • Terry, B.R., Tyerman, S.D., Findlay, G.P. 1991. Ion channels in the plasma membrane ofAmaranthus protoplasts: one cation and one anion channel dominate the conductance.J. Membrane Biol. 121:223–236

    Article  Google Scholar 

  • Tester, M. 1990. Plant ion channels: whole-cell and single-channel studies.New, Phytol. 114:305–340

    Google Scholar 

  • Thaler, M., Steigner, W., Kö:hler, K., Simonis, W., Urbach, W. 1987. Release of repetitive transient potentials and opening of potassium channels by barium inEremosphaera viridis.FEBS Lett. 219:351–354

    Article  Google Scholar 

  • Thomas, R.C., Meech, R.W. 1982. Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones.Nature 299:826–828

    Article  PubMed  Google Scholar 

  • Umrath, K. 1937. Der Erregungsvorgang bei höheren Pflanzen.Ergeb. Biol. 14:1–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoeckel, H., Takeda, K. Plasmalemmal, voltage-dependent ionic currents from excitable pulvinar motor cells ofMimosa pudica . J. Membrain Biol. 131, 179–192 (1993). https://doi.org/10.1007/BF02260107

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02260107

Key Words

Navigation