Skip to main content
Log in

Formation of ion channels by Colicin B in planar lipid bilayers

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The gene for the antibacterial peptide colicin B was cloned and transformed into a host background where it was constitutively overexpressed. The purified gene product was biologically active and formed voltage-dependent, ion-conducting channels in planar phospholipid bilayers composed of asolectin. Colicin B channels exhibited two distinct unitary conductance levels, and a slight preference for Na+ over Cl. Kinetic analysis of the voltage-driven opening and closing of colicin channels revealed the existence of at least two conducting states and two nonconducting states of the protein. Both the ion selectivity and the kinetics of colicin B channels were highly dependent on pH. Excess colicin protein was readily removed from the system by perfusing the bilayer, but open channels could be washed out only after they were allowed to close. A monospecific polyclonal antiserum generated against electrophoretically purified colicin B eliminated both the biological and in vitro activity of the protein. Membrane-associated channels, whether open or closed, remained functionally unaffected by the presence of the antiserum. Taken together, our results suggest that the voltage-independent binding of colicin B to the membrane is the rate-limiting step for the formation of ion channels, and that this process is accompanied by a major conformational rearrangement of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, O.S., Durkin, J.T. 1987. Amino acid sequence alterations and structure-function studies in a membrane channel.Biophys. J. 51:190a

    Google Scholar 

  2. Armstrong, S.K., Parker, C.D. 1986. Heat-modifiable envelope proteins ofBordetella pertussis.Infect. Immun. 54:109–117

    Google Scholar 

  3. Armstrong, S.K., Parr, T.R., Jr., Parker, C.D., Hancock, R.E.W. 1986.Bordetella pertussis major outer membrane porin protein forms small, anion-selective channels in lipid bilayer membranes.J. Bacteriol. 166:212–216

    Google Scholar 

  4. Baty, D., Knibiehler, M., Verheij, H., Pattus, F., Shire, D., Bernadac, A., Lazduski, C. 1987. Site-directed mutagenesis of the COOH-terminal region of colicin A: Effect on secretion and voltage-dependent channel activity.Proc. Natl. Acad. Sci. USA 84:1152–1156

    Google Scholar 

  5. Birnboim, H.C., Doly, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA.Nucleic Acids Res. 7:1513–1523

    Google Scholar 

  6. Bishop, L.J., Cohen, F.S., Davidson, V.L., Cramer, W.A. 1986. Chemical modification of the two histidine and single cysteine residues in the channel-forming domain of colicin E1.J. Membrane Biol. 92:237–245

    Google Scholar 

  7. Boquet, P., Duflot, E. 1982. Tetanus toxin fragment forms channel in lipid vesicles at low pH.Proc. Natl. Acad. Sci. USA 79:7614–7618

    Google Scholar 

  8. Boyer, H.W., Roulland-Dussoix, D. 1969. A complementation analysis of the restriction and modification of DNA inEscherichia coli.J. Mol. Biol. 41:459–474

    Google Scholar 

  9. Braun, V., Maas, E. 1984. Colicin B consists of a single polypeptide chain.FEMS Microbiol. Lett. 21:93–97

    Google Scholar 

  10. Brunden, K.R., Uratani, Y., Cramer, W.A. 1984. Dependence of the conformation of a colicin E1 channel-forming peptide on acidic pH and solvent polarity.J. Biol. Chem. 259:7682–7687

    Google Scholar 

  11. Bullock, J.O. 1986. Differential effects of pH on aqueous and membrane-bound colicin E1.Biophys. J. 49:517a

    Google Scholar 

  12. Bullock, J.O., Cohen, F.S. 1986. Octyl glucoside promotes incorporation of channel into neutral planar phospholipid bilayers. Studies with colicin Ia.Biochim. Biophys. Acta 856:101–108

    Google Scholar 

  13. Bullock, J.O., Cohen, F.S., Dankert, J.R., Cramer, W.A. 1983. Comparison of the macroscopic and single channel conductance properties of colicin E1 and its COOH-terminal tryptic peptide.J. Biol. Chem. 258:9908–9912

    Google Scholar 

  14. Chan, P.T., Ohmori, H., Tomizawa, J., Lebowitz, J. 1985 Nucleotide sequence and gene organization of ColE1 DNA.J. Biol. Chem. 260:8925–8935

    Google Scholar 

  15. Cleveland, M. v. B., Slatin, S., Finkelstein, A., Levinthal, C. 1983. Structure-function relationships for a voltage-dependent ion channel: Properties of COOH-terminal fragments of colicin E1.Proc. Natl. Acad. Sci. USA 80:3706–3710

    Google Scholar 

  16. Collarini, M., Amblard, G., Lazduski, C., Pattus, F. 1987. Gating processes of channels induced by colicin A, its C-terminal fragment and colicin E1 in planar lipid bilayers.Eur. Biophys. J. 14:147–153

    Google Scholar 

  17. Davidson, V.L., Brunden, K.R., Cramer, W.A. 1985. Acidic pH requirement for insertion of colicin E1 into artificial membrane vesicles: Relevance to the mechanism of action of colicins and certain other toxins.Proc. Natl. Acad. Sci. USA 82:1386–1390

    Google Scholar 

  18. Davidson, V.L., Brunden, K.R., Cramer, W.A., Cohen, F.S. 1984. Studies on the mechanism of action of channelforming colincins using artificial membranes.J. Membrane Biol. 79:105–118

    Google Scholar 

  19. Donovan, J.J., Simon, M.I., Draper, R.K., Montal, M.M. 1981. Diphtheria toxin forms transmembrane channels in planar lipid bilayers.Proc. Natl. Acad. Sci. USA 78:872–876

    Google Scholar 

  20. Draper, R.K., Simon, M.I. 1980. The entry of diphtheria toxin into the mammalian cell cytoplasm: Evidence for lysosomal involvement.J. Cell Biol. 87:849–876

    Google Scholar 

  21. Guterman, S.K. 1973. Colicin B: Mode of action and inhibition by enterochelin.J. Bacteriol. 114:1217–1224

    Google Scholar 

  22. Hansen, J.B., Olsen, R.H. 1978. Isolation of large bacterial plasmids and characterization of the P2 incompatibility group plasmids pMG1 and pMG5.J. Bacteriol. 135:227–238

    Google Scholar 

  23. Howe, W.E., Mount, D.W. 1975. Production of cells without deoxyribonucleic acid during thymidine starvation oflexA cultures ofEscherichia coli K-12.J. Bacteriol. 124:1113–1121

    Google Scholar 

  24. Hunkapiller, M.W., Lujan, E., Ostrander, F., Hood, L.E. 1983. Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis.Methods Enzymol. 91:227–236

    Google Scholar 

  25. Kagan, B.L., Finkelstein, A., Columbini, M. 1981. Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes.Proc. Natl. Acad. Sci. USA 78:4950–4954

    Google Scholar 

  26. Liu, Q.R., Crozel, V., Levinthal, F., Slatin, S., Finkelstein, A., Levinthal, C. 1986. A very short peptide makes a voltage-dependent ion channel: The critical length of the channel domain of colicin E1.Proteins 1:218–229

    Google Scholar 

  27. Maniatis, T., Fritsch, E.F., Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory. Cold Springer Harbor (NY)

    Google Scholar 

  28. Mankovich, J.A., Hsu, C.-H., Konisky, J. 1986. DNA and amino acid sequence analysis of the structural and immunity genes of colicin Ia and Ib.J. Bacteriol. 168:228–236

    Google Scholar 

  29. Martinez, C., Lazduski, C., Pattus, F. 1983. Isolation, molecular and functional properties of the C-terminal domain of colicin A.EMBO J. 2:1501–1517

    Google Scholar 

  30. Miller, J.H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory. Cold Spring Harbor (NY)

    Google Scholar 

  31. Montal, M. 1974. Formation of bimolecular membranes from lipid monolayers.Methods Enzymol. 32:545–554

    Google Scholar 

  32. Morlon, J., Lloubes, R., Varenne, S., Chartier, M., Lazduski, C. 1983. Complete nucleotide sequence of the structural gene for colicin A, a gene translated at nonuniform rate.J. Mol. Biol. 170:271–285

    Google Scholar 

  33. Mount, D.W. 1977. A mutant ofEscherichia coli showing constitutive expression of the lysogenic induction and errorprone DNA repair pathways.Proc. Natl. Acad. Sci. USA 74:300–304

    Google Scholar 

  34. Mount, D.W., Low, K.B., Edmiston, S.J. 1972. Dominant mutations (lex) inEscherichia coli K-12 which affect radiation sensitivity and frequency of ultraviolet light-induced mutations.J. Bacteriol. 112:886–893

    Google Scholar 

  35. Neville, D.M., Hudson, T.H. 1986. Transmembrane transport of diphtheria toxin, related toxins, and colicins.Annu. Rev. Biochem. 55:195–224

    Google Scholar 

  36. Pattus, F., Cavard, D., Verger, R., Lazduski, C., Rosenbusch, J., Schindler, H. 1983. Formation of voltage dependent pores in planar bilayers by colicin A.In: Physical Chemistry of Transmembrane Ion Motions. G. Spach, editor. pp. 407–413, Elsevier, Amsterdam

    Google Scholar 

  37. Pattus, F., Martinez, M.C., Dargent, B., Cavard, D., Verger, R., Lazduski, C. 1983. Interaction of colicin A with phospholipid monolayers and liposomes.Biochemistry 22:5698–5703

    Google Scholar 

  38. Pressler, U., Braun, V., Wittmann-Liebold, B., Benz, R. 1986. Structural and functional properties of colicin B.J. Biol. Chem. 261:2654–2659

    Google Scholar 

  39. Raymond, L., Slatin, S., Finkelstein, A. 1985. Channels formed by colicin E1 in planar lipid bilayer are large and exhibit pH-dependent ion selectivity.J. Membrane Biol. 84:173–181

    Google Scholar 

  40. Raymond, L., Slatin, S., Finkelstein, A., Liu, Q.R., Levinthal, C. 1986. Gating of a voltage-dependent channel (colicin E1) in planar lipid bilayers: Translocation of regions outside the channel-forming domain.J. Membrane Biol. 92:255–268

    Google Scholar 

  41. Schein, S.J., Kagan, B.L., Finkelstein, A. 1978. Colicin A acts by forming voltage-dependent channels in phospholipid bilayer membranes.Nature (London) 276:159–163

    Google Scholar 

  42. Schramm, E., Mende, J., Braun, V., Kamp, R.M. 1987. Nucleotide sequence of the colicin B activity genecba: Consensus pentapeptide among TonB-dependent colicins and receptors.J. Bacteriol. 169:3350–3357

    Google Scholar 

  43. Schramm, E., Ölschläger, T., Tröger, W., Braun, V. 1988. Sequence, expression, and localization of the immunity protein for colicin B.Mol. Gen. Genet. 211:176–182

    Google Scholar 

  44. Shirabe, K., Cohen, F.S., Xu, S., Peterson, A.A., Shiver, J.W., Nakazawa, A., Cramer, W.A. 1989. Decrease of anion selectivity caused by mutation of thr501 and gly502 to glu in the hydrophobic domain of the colicin E1 channel.J. Biol. Chem. 264:1951–1957

    Google Scholar 

  45. Shiver, J.W., Cohen, F.S., Merrill, A.R., Cramer, W.A. 1988. Site-directed mutagenesis of the charged residues near the carboxy terminus of the colicin E1 ion channel.Biochemistry 27:8421–8428

    Google Scholar 

  46. Shiver, J.W., Cramer, W.A., Cohen, F.S., Bishop, L.J., deJong, P.J. 1987. On the explanation of the acidic pH requirement for in vitro activity of colicin E1.J. Biol. Chem. 262:14273–14281

    Google Scholar 

  47. Slatin, S.L., Raymond, L., Finkelstein, A. 1986. Gating of a voltage-dependent channel (colicin E1) in planar lipid bilayers: The role of protein translocation.J. Membrane Biol. 92:247–254

    Google Scholar 

  48. Soberon, X., Covarrubias, L., Bolivar, F. 1980. Construction and characterization of new cloning vehicles. IV. Deletion derivatives of pBR322 and pBR325.Gene 9:287–305

    Google Scholar 

  49. Varley, J.M., Boulnois, G.J. 1984. Analysis of a colicin Ib gene. Complete nucleotide sequence and implications for regulation of expression.Nucleic Acids Res. 12:6727–6739

    Google Scholar 

  50. Walker, G.C. 1984. Mutagenesis and inducble responses to deoxyribonucleic acid damage inEscherichia coli.Microbiol. Rev. 48:60–93

    Google Scholar 

  51. Weaver, C.A., Kagan, B.L., Finkelstein, A., Konisky, J. 1981. Mode of action of colicin Ib. Formation of ion-permeable membrane channels.Biochim. Biophys. Acta 645:137–142

    Google Scholar 

  52. White, S.H. 1980. How electric fields modify alkane solubility in lipid bilayers.Science 207:1075–1077

    Google Scholar 

  53. White, J., Kartenbeck, J., Helenius, A. 1982. Membrane fusion activity of influenza virus.EMBO J. 1:217–222

    Google Scholar 

  54. Wickner, W.T., Lodish, H.F. 1985. Multiple mechanisms of protein insertion into and across membranes.Science 230:400–407

    Google Scholar 

  55. Yamada, M., Ebina, Y., Miyata, T., Nakazawa, T., Nakazawa, A. 1982. Nucleotide sequence of the structural gene for colicin E1 and predicted structure of the protein.Proc. Natl. Acad. Sci. USA 79:2827–2831

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bullock, J.O., Armstrong, S.K., Shear, J.L. et al. Formation of ion channels by Colicin B in planar lipid bilayers. J. Membrain Biol. 114, 79–95 (1990). https://doi.org/10.1007/BF01869387

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869387

Key Words

Navigation