Skip to main content
Log in

Shape determinants of McLeod acanthocytes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

We have sought to elucidate the spiculated shape of McLeod erythrocytes. Red cells from a normal donor and from a McLeod patient were incubated in phosphate-buffered saline containing 0, 0.05, or 0.1mm chlorpromazine at 0°C for 5 min. then glutaraldehyde-fixed, and examined by scanning electron microscopy. The normal red cells were biconcave disks in which chlorpromazine induced inward (negative) curvature: deep cupping (stomatocytosis) and multiple invaginations. The McLeod cells were mostly spiculated. Chlorpromazine at lower concentration converted them into biconcave disks and, at higher concentration, into stomatocytes. These results support the hypothesis that the spiculation of McLeod cells is the result of an imbalance of surface area between the two lipid leaflets of the membrane; that is, a bilayer couple effect.

We determined the numerical density of intramembrane particles (IMP) in replicas of both fracture faces of red cells subjected to freeze fracture and rotary shadowing. These values were as follows (expressed per μm2 of membrane ±sd): the normal protoplasmic fracture face had 2200±306 and the McLeod had 2300±250. The normal exoplasmic fracture face had 388±75 and the McLeod had 330±59. We conclude that there is no evidence for derangement of band 3, the principal protein in theIMP, in McLeod erythrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agré, P., Casella, J.F., Zinkham, W.H., McMillan, C., Bennett, V. 1985. Partial deficiency of erythrocyte spectrin in hereditary spherocytosis.Nature (London) 314:380–383

    Google Scholar 

  2. Agré, P., Orringer, E.P., Chui, D.H.K., Bennett, V. 1981. A molecular defect in two families with hemolytic poikilocytic anemia. Reduction of high affinity membrane binding sites for ankyrin.J. Clin. Invest. 68:1566–1576

    Google Scholar 

  3. Allen, F.H., Krabbe, S.M.R., Corcoran, P.A. 1961. A new phenotype (McLeod) in the Kell blood group system.Vox Sang. 6:555–560

    Google Scholar 

  4. Bessis, M. 1973.In: Red Cell Shape. M. Bessis, R.I. Weed, and P.F. LeBlond, editors. pp. 1–23. Springer-Verlag, New York

    Google Scholar 

  5. Branton, D., Cohen, C.M., Tyler, J. 1981. Interaction of cytoskeletal proteins on the human erythrocyte membrane.Cell 24:24–32

    Google Scholar 

  6. Chaplin, D.B., Kleinfeld, A.M. 1983. Interaction of fluorescent quenchers with the n-(9-anthroyloxyl) fatty acid membrane probes.Biochim. Biophys. Acta 73:465–474

    Google Scholar 

  7. Conrad, M.J., Singer, S.J. 1981. The solubility of amphipathic molecules in biological membranes and lipid bilayers and its implications for membrane structure.Biochemistry 20:808–818

    Google Scholar 

  8. Danon, D., Goldstein, L., Marikovsky, Y., Skuletsky, E. 1972. Use of cationized ferritin as a label of negative charges on cell surfaces.J. Ultrastruct. Res. 38:500–510

    Google Scholar 

  9. Ferrell, J.E., Jr., Lee, K.J., Huestis, W.H. 1985. Membrane bilayer balance and erythrocyte shape: A quantitative assessment.Biochemistry 24:2849–2857

    Google Scholar 

  10. Galey, W.R., Evan, A.P., Van Nice, P.S., Dail, W.G., Cooper, R.A. 1978. Morphology and physiology of the McLeod erythrocyte: I. Scanning electron microscopy and water transport properties.Vox Sang. 34:152–161

    Google Scholar 

  11. Glaubensklee, C.S., Evan, A.P., Galey, R. 1982. Structural and biochemical analysis of the McLeod erythrocyte membrane.Vox Sang. 42:262–271

    Google Scholar 

  12. Jinbu, Y., Sato, S., Nakao, T., Nakao, M. 1982. Ankyrin is necessary for both drug-induced and ATP-induced shape change of human erythrocyte ghosts.Biochem. Biophys. Res. Commun. 104:1087–1092

    Google Scholar 

  13. Khodadad, J.K., Loew, J.M., Weinstein, R.S. 1986. Freezefracture and freeze-etch electron microscopy of membrane proteins.In: Techniques for the Analysis of Membrane Proteins. C. I. Ragan and R. J. Cherry, editors. pp. 275–314. Chapman and Hall, London

    Google Scholar 

  14. Khodadad, J.K., Weinstein, R.S. 1983. The band 3-rich membrane of llama erythrocyte: Studies on cell shape and the organization of membrane proteins.J. Membrane Biol. 72:161–171

    Google Scholar 

  15. Khodadad, J.K., Weinstein, R.S., Steck, T.L. 1986. Quantitation of intramembrane particles of McLeod red cells.Proc. 44th Annu. Meet. Elect. Microsc. Soc. Am. (Albuquerque, NM) pp. 218–219

  16. Kuypers, F.A., Linde-Sibenius Trip, M., Roelofsen, B., Opden Kamp, J.A.F., Tanner, M.J.A., Anstee, D.J. 1985. The phospholipid organization in the membranes of McLeod and Leach phenotype erythrocytes.FEBS Lett. 184:20–24

    Google Scholar 

  17. Lange, Y., Steck, T.L. 1984. Mechanism of red blood cell acanthocytosis and echinocytosis in vivo.J. Membrane Biol. 77:153–159

    Google Scholar 

  18. Lawler, J., Liu, S.C., Palek, J., Prchal, J. 1984. A molecular defect of spectrin in a subset of patients with hereditary elliptocytosis. Alterations in the a-subunit domain involved in spectrin self association.J. Clin. Invest. 73:1688–1984

    Google Scholar 

  19. Lieber, M.R., Lange, Y., Weinstein, R.S., Steck, T.L. 1984. Interaction of chlorpromazine with the human erythrocyte membrane.J. Biol. Chem. 259:9225–9234

    Google Scholar 

  20. Lux, S.E. 1979. Spectrin-actin membrane skeleton of normal and abnormal red blood cells.Semin. Hematol. 16:21–51

    Google Scholar 

  21. Luxnat, M., Müller, H.J., Galla, H.-J. 1984. Membrane solubility of chlorpromazine.Biochem. J. 224:1023–1026

    Google Scholar 

  22. Marchesi, S.L., Knowles, W.J., Morrow, J.S., Bologna, M., Marchesi, V.T. 1986. Abnormal spectrin in hereditary elliptocytosis.Blood 67:141–151

    Google Scholar 

  23. Margaritis, L.H., Elgsaeter, A., Branton, D. 1977. Rotary replication for freeze-etching.J. Cell Biol. 72:47–56

    Google Scholar 

  24. Marsh, W.L., Oyen, R., Nichols, M.E., Allen, F.H., Jr., 1975. Chronic granulomatous disease and the Kell blood groups.Br. J. Haematol. 29:247–262

    Google Scholar 

  25. Marsh, W.L., Redman, C.M. 1987. Recent developments in the Kell blood group system.Transfus. Med. Rev. 1:4–20

    Google Scholar 

  26. Moor, H., Mühlethaler, K. 1963. Fine structure in frozen etched yeast cells.J. Cell Biol. 17:609–628

    Google Scholar 

  27. Parker, J.D., Burkowitz, L.R. 1986. Genetic variants affecting the structure and function of human red cell membrane.In: Physiology of Membrane Disorders. (2nd ED.) T.E. Andreoli, J.F. Hoffman, D.D. Fanestil, and S.G. Shultz, editors. pp. 785–814. Plenum, New York-London

    Google Scholar 

  28. Pjura, W.J., Kleinfeld, A.M., Karnovsky, M.J. 1984. Partition of fatty acids and fluorescent fatty acids into membranes.Biochemistry 23:2039–2043

    Google Scholar 

  29. Redman, C.M., Marsh, W.L., Scarborough, A., Johnson, C.L., Rabin, B.I., Overbeeke, M. 1988. Biochemical studies on McLeod phenotype red cells and isolation of Kx Antigen.Br. J. Haematol. 68:131–136

    Google Scholar 

  30. Sheetz, M.P., Singer, S.J. 1974. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interaction.Proc. Natl. Acad. Sci. USA 71:4457–4461

    Google Scholar 

  31. Singer, K., Fisher, B., Perlstein, M.A. 1952. Acanthocytosis: Genetic erythrocytic malformation.Blood 7:577–591

    Google Scholar 

  32. Steck, T.L. 1989. Red cell shape.In: Cell Shape: Determinants, Regulation, Regulatory Role. W. Stein and F. Bonner, editors. Academic, New York (in press)

    Google Scholar 

  33. Tang, L.L., Redman, C.M., Williams, D., Marsh, W.L. 1981. Biochemical studies on McLeod phenotype erythrocytes.Vox Sang. 40:17–26

    Google Scholar 

  34. Weinstein, R.S., Benefiel, D.J., Pauli, B.U. 1979. Use of computers in the analysis of intramembrane particles.In: Freeze Fracture: Methods, Artifacts and Interpretations. J.E. Rash and C.S. Hudson, editors. pp. 175–183. Raven, New York

    Google Scholar 

  35. Weinstein, R.S., Khodadad, J.K., Steck, T.L. 1978. Fine structure of the band 3 protein in human red cell membrane. Freeze-fracture studies.J. Supramol. Struct. 8:325–335

    Google Scholar 

  36. Weinstein, R.S., Khodadad, J.K., Steck, T.L. 1978. Ultrastructural characterization of proteins at the natural surfaces of the red cell membrane.Prog. Clin. Biol. Res. 21:413–427

    Google Scholar 

  37. Weinstein, R.S., Khodadad, J.K., Steck, T.L. 1980. The band 3 protein particle of the human red blood cell.In: Membrane Transport in Erythrocytes. U.V. Lassen, H.H. Ussing, and J.O. Wieth, editors. pp. 35–50. Munksgaard, Copenhagen

    Google Scholar 

  38. Wimer, B.M., Marsh, W.L., Taswell, H.F., Galey, W.R. 1977. Haematological changes associated with the McLeod phenotype of the Kell blood group system.Br. J. Haematol. 36:219–224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khodadad, J.K., Weinstein, R.S., Marsh, L.W. et al. Shape determinants of McLeod acanthocytes. J. Membrain Biol. 107, 213–218 (1989). https://doi.org/10.1007/BF01871936

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871936

Key Words

Navigation