Skip to main content
Log in

Demonstration of calmodulin-sensitive calcium translocation by isolated osteoclast plasma membrane vesicles

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Plasma membrane vesicles were prepared from chicken osteoclasts, and active calcium transport was demonstrated in a spectrofluorimetric assay using the fluorescent calcium concentration indicator, fura-2. Transport activity was inhibited by quercetin (10 μM), sodium vanadate (10 μM), and the anticalmodulin agents, compound 48/80 (20 and 200 μg/ml) and calmidazolium (10 and 20 μM). The transport rate (Vmax, 1.3 nmol/mg protein/min) was not altered in the presence of the protonophore, nigericin (1 μM), indicating that proton transport was not driving calcium transport. Release of accumulated calcium in the vesicles occurred with the addition of bromo-A23187 (5 μM) or ionomycin (5 μM). Increasing calcium transport occurred with increasing calcium concentration. Finally, the calmodulin content of the vesicles was demonstrated to be 54–134 U/mg protein. These results demonstrate that a calmodulin-sensitive, ATP-dependent calcium transporter is present in the osteoclast plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akisaka T, Yamamoto T, Gay CV (1988) Ultracytochemical investigation of calcium-activated adenosine triphosphatase (Ca++-ATPase) in chick tibia. J Bone Miner Res 3:19–25

    Google Scholar 

  2. Kinne-Saffran E, Kinne R (1974) Localization of a calciumstimulated ATPase in the basal-lateral plasma membranes of the proximal tubule of rat kidney cortex. J Membr Biol 17:263–274

    Google Scholar 

  3. Gmaj P, Murer H, Kinne R (1979) Calcium ion transport across plasma membranes isolated from rat kidney cortex. Biochem J 178:549–557

    Google Scholar 

  4. Ghijsen WEJM, Van Os CH (1979) Ca-stimulated ATPase in brush border and basolateral membranes of rat duodenum with high affinity sites for Ca ions. Nature 279:802–803

    Google Scholar 

  5. Nellans HN, Popovitch JF (1981) Calmodulin-regulated, ATP-driven calcium transport by basolateral membranes of rat small intestine. J Biol Chem 256:9932–9936

    Google Scholar 

  6. Fisher GJ, Kelley LK, Smith CH (1987) ATP-dependent calcium transport across basal plasma membranes of human placental trophoblast. Am J Physiol 252:C38-C46

    Google Scholar 

  7. Bekker PJ, Gay CV (1990) Characterization of a Ca++-ATPase in osteoclast plasma membrane. J Bone Miner Res 5:557–567

    Google Scholar 

  8. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    Google Scholar 

  9. Teo TS, Wang TH, Wang JH (1973) Purification and properties of the protein activator of bovine heart cyclic adenosine 3′,5′-monophosphate phosphodiesterase. J Biol Chem 248:588–595

    Google Scholar 

  10. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    Google Scholar 

  11. Rega AF, Garrahan PJ (1986) The Ca2+ pump of plasma membranes. CRC Press, Boca Raton, FL, pp 27 and 56

    Google Scholar 

  12. Bekker PJ, Gay CV (1990) Biochemical characterization of an electrogenic vacuolar proton pump in purified chicken osteoclast plasma membrane vesicles. J Bone Miner Res 5:569–579

    Google Scholar 

  13. Karlish SJD, Beauge LA, Glynn IM (1979) Vanadate inhibits (Na++K+)-ATPase by blocking a conformational change of the unphosphorylated form. Nature 282:333–335

    Google Scholar 

  14. Epping RJ, Bygrave FL (1984) A procedure for the rapid isolation from rat live of plasma membrane vesicles exhibiting Ca2+-transport and Ca2+-ATPase activities. Biochem J 223:733–745

    Google Scholar 

  15. Chan K-M, Junger KD (1983) Calcium transport and phosphorylated intermediate of (Ca2++Mg2+)-ATPase in plasma membranes of rat liver. J Biol Chem 258:4404–4410

    Google Scholar 

  16. Caroni P, Carafoli E (1981) The Ca2+ pumping ATPase from heart sarcolemma. Characterization, calmodulin dependence and partial purification. J Biol Chem 256:3263–3270

    Google Scholar 

  17. Niggli V, Adunyah ES, Penniston JT, Carafoli E (1981) Purified (Ca2++Mg2+)-ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids. J Biol Chem 256:395–401

    Google Scholar 

  18. Wüthrich A, Schatzmann HJ (1980) Inhibition of the red cell calcium pump by quercetin. Cell Calcium 1:21–35

    Google Scholar 

  19. Kuriki Y, Racher E (1976) Inhibition of (Na+,K+) adenosine triphosphatase and its partial reactions by quercetin. Biochemistry 15:4951–4956

    Google Scholar 

  20. Fewtrell CMS, Gomperts BD (1977) Effect of flavone inhibitors of transport ATPase on histamine secretion from rat mast cells. Nature 265:635–636

    Google Scholar 

  21. Verma AK, Filoteo AG, Stanford DR, Wieben ED, Penniston JT, Strehler EE, Fischer R, Hiem R, Vogel G, Mathews S, Strehler-Page M-A, James P, Vorherr T, Krebs J, Carafoli E (1988) Complete primary structure of a human plasma membrane Ca2+ pump. J Biol Chem 263:14152–14159

    Google Scholar 

  22. Papp B, Sarkadi B, Enyedi A, Caride AJ, Penniston JT, Gardos G (1989) Functional domains of the in situ red cell membrane calcium pump revealed by proteolysis and monoclonal antibodies. J Biol Chem 264:4577–4582

    Google Scholar 

  23. James P, Vorherr T, Krebs J, Morelli A, Castello G, McCormick DJ, Penniston JT, Deflora A, Carafoli E (1989) Modulation of erythrocyte Ca2+-ATPase by selective calpain cleavage of the calmodulin-binding domain. J Biol Chem 264:8289–8296

    Google Scholar 

  24. Wang KKW, Villalobo A, Roufoglas BD (1988) Activation of the Ca2+-ATPase of human erythrocyte membrane by an endogenous Ca2+-dependent neutral protease. Arch Biochem Biophys 260:696–704

    Google Scholar 

  25. Taverna RD, Hanahan DJ (1980) Modification of human Ca2+/Mg2+-ATPase activity by phospholipase A2 and proteases. A comparison with calmodulin. Biochim Biophys Res Comm 94:652–659

    Google Scholar 

  26. Gietzen K, Wüthrich A, Bader H (1981) R24571: a new powerful inhibitor of red blood cell Ca++-transport ATPase and of calmodulin-regulated function. Biochim Biophys Res Comm 101:418–425

    Google Scholar 

  27. Kraus-Friedmann N, Biber J, Murer H, Carafoli E (1982) Calcium uptake in isolated hepatic plasma-membrane vesicles. Eur J Biochem 129:7–12

    Google Scholar 

  28. Minami J, Penniston JT (1987) Ca2+ uptake by corpus-luteum plasma membranes. Biochem J 242:889–894

    Google Scholar 

  29. Takuma T, Kuyatt BL, Baum BJ (1985) Calcium transport mechanisms in basolateral plasma membrane-enriched vesicles from rat parotid gland. Biochem J 227:239–245

    Google Scholar 

  30. Ochs DL, Reed PW (1983) ATP-dependent calcium transport in plasma membrane vesicles from neutrophil leukocytes. J Biol Chem 258:10116–10122

    Google Scholar 

  31. Caride AJ, Rega AF, Garrahan PJ (1983) Effects of p-nitrophenyl phosphatase on Ca2+ transport in inside out vesicles from human red cell membranes. Biochim Biophys Acta 734:363–367

    Google Scholar 

  32. Mollman JE, Pleasure DE (1980) Calcium transporting human inside-out erythrocyte vesicles. J Biol Chem 255:569–574

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bekker, P.J., Gay, C.V. Demonstration of calmodulin-sensitive calcium translocation by isolated osteoclast plasma membrane vesicles. Calcif Tissue Int 51, 312–316 (1992). https://doi.org/10.1007/BF00334493

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00334493

Key words

Navigation