Skip to main content
Log in

Further investigation on the organic/inorganic relationships in calcifying cartilage

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

The organic/inorganic relationships in calcifying cartilage have been studied in tibialfemoral epiphyses of 5-day-old rats and in costochondral junctions of 1-month-old guinea pigs. The main results are:

(a) Apatite crystallites in areas of early cartilage calcification are easily removed from araldite and glycol methacrylate (GMA) sections by 1-hour treatment with 2% formic acid. (b) The decalcified areas have a very low electron density and do not contain recognizable structures. Only after osmium fixation can an amorphous material be found in them. (c) Independently from the fixative and the embedding medium, staining decalcified areas with uranyl acetate and/or lead citrate reveals thin, elongated structures (crystallite ghosts) similar in shape to apatite crystallites. (d) These crystallite ghosts and a dense background are stained by phosphotungstic acid (PTA) in GMA sections, a method which reveals polysaccharides. (e) The dense background is no longer stained by PTA after hyaluronidase digestion and the stainability of the crystallite ghosts is reduced. After uranyl acetate/lead citrate staining there are no recognizable changes due to hyaluronidase. But, on the other hand, the fine structure of the crystallite ghosts is modified by papain digestion. (f) Clusters of fibrillar material are present in the areas of early calcification when EDTA decalcification is carried out before embedding the specimens.

These results confirm the organic nature of the crystallite ghosts and suggest that they are formed by thin, rod-like protein/like structures (digested by papain) surrounded, and probably sheathed, by acid polysaccharides (digested by hyaluronidase and stained by PTA in GMA sections).

Résumé

Les rapports entre composants organiques et inorganiques du cartilage ont été étudiés au niveau des épiphyses tibiales chez des rats de 5 jours et au niveau des jonctions costo-chondrales chez des cobayes d'un mois.

Voici les principaux résultats auxquels on est parvenu: (a) Dans les zones où la calcification s'amorce les cristallites d'apatite sont susceptibles d'être facilement éliminés des coupes en araldite et en glycol methacrylate (GMA) après traitement pendant une heure par une solution d'acide formique au 2%. (b) Les zones décalcifiées sont douées d'une faible densité aux électrons et vont exemptes d'une structure quelconque. Seulement la fixation à l'osmium peut révéler du matériel amorphe. (c) Indépendemment du fixateur et du moyen d'inclusion, les coupes décalcifiées, traitées par l'acétate d'uranyl et/ou par le citrate de plomb, montrent de fines structures allongées dont l'aspect est semblable à celui des cristallites. (d) Ces structures ainsi qu'un fond dense interposé prennent l'acide phosphotungstique (PTA) dans les coupes en GMA, une méthode celle-ci qui met en évidence les polysaccharides. (e) Le fond dense ne prend plus le PTA après traitement par la hyaluronidase et en même temps les structures semblables au cristallites apparaissent plus faibles. Après traitement par l'acétate d'uranyl et le citrate de plomb, l'attaque par la hyaluronidase ne produit aucune modification appréciable. Au contraire l'aspect des structures semblables aux cristallites apparait modifié par la digestion à la papaïne. (f) Quand la décalcification à l'EDTA précéde l'enrobage, des amas de matériel fibrillaire se mettent en évidence dans les zones où la calcification s'était amorcée.

L'ensemble de ces résultats permet d'établir la nature organique des structures semblables au cristallites et porte aussi à admettre que celles-ci soient formées par de fins filaments cylindriques (digérés par la papaïne) entourés, et probablement engainés par del polysaccharides (digérés par la hyaluronidase et prennant le PTA dans les coupes en GMA).

Zusammenfassung

Die Wechselbeziehungen zwischen den organischen und inorganischen Substanzen des verkalkenden Knorpels wurden in der tibialen und femuralen Epiphyse 5 Tage alter Ratten und in den Rippen 1 Monat alter Meerschweinchen untersucht.

Die Hauptergebnisse waren:

  1. a)

    Die Hydroxyapatitkristalle der Frühverkalkungszonen können in Araldit- wie auch in Glycolmethylacrilatschnitten (GMA) mit einer lstündigen Behandlung durch 1% ige Ameisensäure leicht entfernt werden.

  2. b)

    Die entkalkten Zonen haben eine sehr niedrige Elektronendichte und enthalten keine sichtbaren Festkörper. Nach Fixierung mit Osmiumsäure kann man darin ein formloses Material erkennen.

  3. c)

    Eine Färbung der Schnitte mit Uranacetat und Bleicitrat, welche von den Fixier- und Einbettungsmitteln nicht beeinträchtigt wird, zeigt feine, längliche Körper (“Kristallgeister”) an, welche morphologisch den Kristallen von Hydroxyapatit gleichen.

  4. d)

    Die Färbung der GMA-Schnitte mit Phosphowolframsäure (PWS), eine Methode welche Polysaccharide anzeigt, hob diese “Kristallgeister” besonders hervor und demonstrierte auch eine dichte dazwischenliegende Grundsubstanz.

  5. e)

    Diese Substanz ist nach Behandlung mit Hyaluronidase nicht mehr färbbar mit PWS; die Färbbarkeit der “Kristallgeister” wird dabei jedoch nur verringert. Die Hyaluronidasebehandlung verändert die Uranacetat- und Bleicitratfärbung nicht. Die Feinstruktur der “Kristallgeister” wird durch Papainbehandlung sehr angegriffen.

  6. f)

    Falls die Schnitte vor dem Einbetten mit EDTA entkalkt werden, können Faserbündel in den Frühzonen der Verkalkung nachgewiesen werden.

Diese Ergebnisse bestätigen die organische Natur der “Kristallgeister”. Sie beweisen auch, daß dieselben aus feinen Proteinstäbchen bestehen (verdaulich in Papain) und von Polysacchariden umgeben und vielleicht auch überzogen sind (verdaulich in Hyaluronidase und anfärbbar mit PWS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonar, L. C., M. J. Glimcher, andG. L. Mechanic: The molecular structure of the neutralsoluble proteins of embryonic bovine enamel in the solid state. J. Ultrastruct. Res.13, 308–317 (1965).

    PubMed  Google Scholar 

  • Bonucci, E.: Fine structure of early cartilage calcification. J. Ultrastruct. Res.20, 33–50 (1967).

    PubMed  Google Scholar 

  • Boothroyd, B.: The problem of demineralization in thin sections of fully calcified bone. J. Cell Biol.20, 165–173 (1964).

    PubMed  Google Scholar 

  • Cabrini, R. L.: Histochemistry of ossification. Int. Rev. Cytol.11, 283–306 (1961).

    PubMed  Google Scholar 

  • Cameron, D. A.: The fine structure of bone and calcified cartilage. Clin. Orthop.26, 199–228 (1963).

    PubMed  Google Scholar 

  • Cessi, C., andG. Bernardi: The kinetics of enzymatic degradation and the structure of proteinpolysaccharide complexes of cartilage. In: Structure and function of connective and skeletal tissue, p. 152. London: Butterworths 1965.

    Google Scholar 

  • Curran, R. C., A. E. Clark, andD. Lovell: Acid mucopolysaccharides in electron microscopy. The use of colloidal iron method. J. Anat. (Lond.)99, 427–434 (1965).

    Google Scholar 

  • Ennever, J., andH. Creamer: Microbiologic calcification: bone mineral and bacteria. Calc. Tiss. Res.1, 87–93 (1967).

    Google Scholar 

  • Fitton Jackson, S.: Fibrogenesis and the formation of matrix. In: Bone as a tissue, p. 165 (K. Rodahl, J. T. Nicholson, andE. M. Brown, eds.), New York: McGraw-Hill Book Co. 1960.

    Google Scholar 

  • Frank, R. M., R. F. Sognnaes, andR. Kern: Calcification of dental tissue with special reference to enamel ultrastructure. In: Calcification in biological systems, p. 163 (R. F. Sognnaes, ed.). Washington: Am. Ass. Advanc. Sci. 1960.

    Google Scholar 

  • Glimcher, M. J.: Molecular biology of mineralized tissues with particular reference to bone. Rev. Modern Phys.31, 359–393 (1959).

    Google Scholar 

  • —,P. T. Levine, andL. C. Bonar: Morphological and biochemical considerations in structural studies of the organic matrix of enamel. J. Ultrastruct. Res.13, 281–295 (1965).

    PubMed  Google Scholar 

  • Hirschman, A., andD. D. Dziewiatkowski: Protein-polysaccharide loss during endochondral ossification: immunochemical evidence. Science154, 393–395 (1966).

    PubMed  Google Scholar 

  • Höhling, H.-J., andJ. Vahl: Organic matrix and crystal formation in different types of mineralization. Fourth Europ. Symp. Calcif. Tissues (Abridged Proceedings). Leiden/ Noordwijk aan Zee: Excerpta Med. Intern. Congr. Series No 120, 1966.

  • Leduc, E. H., andW. Bernard: Water soluble embedding media for ultrastructural cytochemistry. In: The interpretation of ultrastructure, p. 21 (R. J. C. Harris, ed.). New York: Academic Press 1962.

    Google Scholar 

  • ——: Recent modifications of the glycol methacrylate embedding procedure. J. Ultrastruct. Res.19, 196–199 (1967)

    PubMed  Google Scholar 

  • Luft, J. H.: Electron microscopy of cell extraneous coats as revealed by ruthenium red staining. J. Cell Biol.23, 54 A (1964).

    Google Scholar 

  • Marinozzi, V.: Silver impregnation of ultrathin sections for electron microscopy. J. biophys. biochem. Cytol.9, 121–133 (1961).

    PubMed  Google Scholar 

  • —: Réaction de l'acide phosphotungstique avec la mucine et les glycoprotéines des plasmamembranes. J. Microscopie6, 68a (1967).

    Google Scholar 

  • —, etW. Bernard: Présence dans le nucléole de deux types de ribonucléoprotéines morphologiquement distinctes. Exp. Cell Res32, 595–598 (1963).

    PubMed  Google Scholar 

  • Mathews, M. B.: Molecular evolution of connective tissue. A comparative study of acid mucopolysaccharide-protein complexes. In: Structure and function of connective and skeletal tissue, p. 181. London: Butterworths 1965.

    Google Scholar 

  • —, andI. Lozaityte: Sodium chondroitin sulphate-protein complexes of cartilage. 1. Molecular weight and shape. Arch. Biochem.74, 158–174 (1958).

    PubMed  Google Scholar 

  • Millonig, G.: Further observations on a phosphate buffer for osmium solution in fixation. In: Electron microscopy. Fifth Int. Congr. Electron Microscopy, vol. 2, P-8 (S. S. Breese Jr., ed.). New York: Academic Press 1962.

    Google Scholar 

  • Muir, H.: The nature of the link between protein and carbohydrate of a chondroitin sulphate complex from hyaline cartilage. Biochem. J.69, 195–204 (1958).

    PubMed  Google Scholar 

  • —: Chemistry and metabolism of connective tissue glycosaminoglycans (Mucopolysaccharides). Int. Rev. Connect. Tiss. Res.2, 101–154 (1964).

    Google Scholar 

  • Ohkura, T.: Electron microscopic demonstration of acid mucopolysaccharides in the sinovial membrane of an adult dog. Electron microscopy. Proceed. 6th Intern. Congr. Electron Microscopy, vol. 2, p. 67 (R. Uyeda, ed.). Kyoto: Maruzen Co. 1966.

    Google Scholar 

  • Partridge, S. M., H. F. Davis, andG. S. Adair: The constitution of the chondroitin sulphateprotein complex in cartilage. Biochem. J.79, 15–26 (1961).

    PubMed  Google Scholar 

  • Pautard, F. G. E.: Calcification of baleen. In: Calcified tissues. Proceed. Second Europ. Symp. Calcif. Tiss., p. 347 (L. J. Richelle andM. J. Dallemagne, eds.). Liège: Université de Liège 1965.

    Google Scholar 

  • —: A biomolecular survey of calcification. In: Calcified tissues 1965. Proceed. Third Europ. Symp. Calcif. Tiss., p. 108 (H. Fleisch, H. J. J. Blackwood, andM. Owen, ed.). Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  • Pease, D. C.: Polysaccharides associated with the exterior surface of epithelial cells: kidney, intestine, brain. J. Ultrastruct. Res.15, 555–588 (1966).

    PubMed  Google Scholar 

  • Pritchard, J. J.: A cytological and histochemical study of bone and cartilage formation in the rat. J. Anat. (Lond.)86, 259–277 (1952).

    Google Scholar 

  • Rambourg, A.: An improved silver methenamine technique for the detection of periodic acidreactive complex carbohydrates with the electron microscope. J. Histochem. Cytochem.15, 409–412 (1967).

    PubMed  Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol.17, 208–212 (1963).

    PubMed  Google Scholar 

  • Robinson, R. A., andD. A. Cameron: Electron microscopy of cartilage and bone matrix at the distal epiphyseal line of the femur in the newborn infant. J. biophys. biochem. Cytol.2, 253–260 (1956).

    Google Scholar 

  • Rönnholm, E.: The structure of the organic stroma of human enamel during amelogenesis. J. Ultrastruct. Res.3, 368–389 (1962).

    Google Scholar 

  • Serafini-Fracassini, A., andJ. W. Smith: Observations on the morphology of the proteinpolysaccharide complex of bovine nasal cartilage and its relationship to collagen. Proc. roy. Soc. B165, 440–449 (1966).

    Google Scholar 

  • Smith, J. W., T. J. Peters, andA. Serafini-Fracassini: Observations on the distribution of the proteinpolysaccharide complex and collagen in bovine articular cartilage. J. Cell Sci.2, 129–136 (1967).

    PubMed  Google Scholar 

  • Sobel, A. E.: Multiple substances and mechanism of nucleation. In: Calcified tissues. Proceed. Second Europ. Symp. Calcif. Tiss., p. 291 (L. J. Richelle andM. J. Dallemagne, eds.). Liége: Universitè de Liège 1965.

    Google Scholar 

  • Takuma, S.: Electron microscopy of the developing cartilaginous epiphysis. Arch. oral Biol.2, 111–119 (1960).

    PubMed  Google Scholar 

  • Tice, L. W., andR. J. Barrnett: Alcain blue staining for electron microscopy. J. Histochem. Cytochem.10, 688–689 (1962).

    Google Scholar 

  • Travis, D. F., andM. J. Glimcher: The structure and organization of, and the relationship between the organic matrix and the inorganic crystals of embryonic bovine enamel. J. Cell Biol.23, 447–497 (1964).

    PubMed  Google Scholar 

  • Weidmann, S. M.: Calcification of skeletal tissues. Int. Rev. Connect. Tiss. Res.1, 339–377 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was supported by a grant of the Italian Research Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonucci, E. Further investigation on the organic/inorganic relationships in calcifying cartilage. Calc. Tis Res. 3, 38–54 (1969). https://doi.org/10.1007/BF02058644

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02058644

Key words

Navigation