Skip to main content
Log in

Strain analysis in Jurassic argillites of the Monte Sirino area (Lagonegro Zone, southern Apennines, Italy) and implications for deformation paths in pelitic rocks

  • Original Paper
  • Published:
Geologische Rundschau Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Analysis of strain in Jurassic argillites forming part of the folded and thrusted sedimentary succession of the Lagonegro basin (southern Italian Apennines) has been carried out using ellipsoid-shaped ‘reduction’ spots as strain markers. Most of the determined finite strain ellipsoids are of oblate type and show a peculiar distribution of the maximum extension direction (X), with maxima either subparallel or subperpendicular to the local fold axes. Using the strain matrix method, two different deformation histories have been considered to assist the interpretation of the observed finite strain pattern. A first deformation history involved vertical compaction followed by horizontal shortening (occurring by a combination of true tectonic strain and volume loss), whereby all strain is coaxial and there is no change in the intermediate axis of the strain ellipsoid. By this type of deformation sequence, which produces a deformation path where total strain moves from the oblate to the prolate strain field and back to the oblate field, prolate strain ellipsoids can be generated and may be recorded where tectonic deformation has not been large enough to reverse pretectonic compaction. This type of deformation history may be of local importance within the study area (i.e. it may characterize some fold hinge regions) and, more generally, is probably of limited occurrence in deformed pelitic rocks. A second deformation sequence considered the superposition of pre-tectonic compaction and tectonic strain consisting of initial layer-parallel shortening followed by layer-parallel shear (related to flexural folding). Also in this instance, volume change during tectonic deformation and tectonic plane strain have been assumed. For geologically reasonable amounts of volume loss due to compaction and of initial layer-parallel shortening, this type of deformation history is capable of producing a deformation path entirely lying within the oblate strain field, but still characterized by a changeover, during deformation, of the maximum extension axis (X) from a position parallel to the fold axis to one perpendicular to it. This type of deformation sequence may explain the main strain features observed in the study area, where most of the measured finite strain ellipsoids, determined from the limb regions of flexural folds, display an oblate shape, irrespective of the orientation of their maximum extension direction (X) with respect to the local structural trends. More generally, this type of deformation history provides a mechanism to account for the predominance of oblate strains in deformed pelitic rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker D, Chawla K, Krizek R (1993) Compaction fabrics of pelites: experimental consolidation of kaolinite and implications for analysis of strain in slate. J Struct Geol 15:1123–1137

    Google Scholar 

  • Bell A (1985) Strain paths during slaty cleavage formation — the role of volume loss. J Struct Geol 7:563–568

    Google Scholar 

  • Beutner EC, Charles EG (1985) Large volume-loss during cleavage formation, Hamburg sequence, Pennsylvania. Geology 13:803–805

    Google Scholar 

  • Bonardi G, Amore FO, Ciampo G, de Capoa P, Miconnet P, Perrone V (1988) Il Complesso Liguride auct.: stato delle conoscenze e problemi aperti sulla sua evoluzione pre-appenninica ed i suoi rapporti con l'Arco Calabro. Mem Soc Geol Ital 41:17–35

    Google Scholar 

  • Casero P, Roure F, Vially R (1991) Tectonic framework and petroleum potential of the southern Apennines. In: Spencer AM (ed) Generation, Accumulation, and Production of Europe's Hydrocarbons. Spec Publ Eur Assoc Petrol Geosci No 1:381–387

  • Channel JET, D'Argenio B, Horvath F (1979) Adria, the African promontory, in Mesozoic Mediterranean paleogeography. Earth Sci Rev 15:213–292

    Google Scholar 

  • Cinque A, Patacca E, Scandone P, Tozzi M (1993) Quaternary kinematic evolution of the Southern Apennines. Relationships between surface geological features and deep lithospheric structures. Ann Geofis 36:249–260

    Google Scholar 

  • Couzens BA, Dunne WM, Onasch CM, Glass R (1993) Strain variations and three-dimensional strain factorization at the transition from the southern to the central Appalachians. J Struct Geol 15:451–464

    Google Scholar 

  • Engelder T, Geiser P (1979) The relationship between pencil cleavage and lateral shortening within the Devonian section of the Appalachian Plateau, New York. Geology 7:460–464

    Google Scholar 

  • Evans MA, Dunne WM (1991) Strain factorization and partitioning in the North Mountain thrust sheet, central Applachians, U.S.A. J Struct Geol 13:21–35

    Google Scholar 

  • Fischer MW, Coward MP (1982) Strains and folds within thrust sheets: an analysis of the heilam sheet, northern Scotland. Tectonophysics 88:291–312

    Google Scholar 

  • Fischer MP, Woodward N, Mitchell MM (1992) The kinematics of break-thrust folds. J Struct Geol 14:451–460

    Google Scholar 

  • Flinn D (1978) Construction and computation of three-dimensional progressive deformations. J Geol Soc London 135:291–305

    Google Scholar 

  • Geiser PA (1988) Mechanisms of thrust propagation: some examples and implications for the analysis of overthrust terranes. J Struct Geol 10:829–845

    Google Scholar 

  • Graham RH (1978) Quantitative deformation studies in the Permian rocks of the Alpes Maritimes. Proc Goguel Symp (Bur Rech Geol Mines, France):220–238

  • Grandjaquet C (1962) Données nouvelles sur la tectonique tertiaire des massif calabro-lucaniens. Bull Soc Geol Fr 4:695–706

    Google Scholar 

  • Grandjaquet C (1963) Schéma structural de I'Apennin CampanoLucanien (Italie). Rév Géogr Phys Géol Dyn 5:185–202

    Google Scholar 

  • Ietto A, Barilaro AM (1993) L'unità di San Donato quale margine deformato cretacico-paleogene del bacino di Lagonegro (Appennino Meridionale-Arco Calabro). Boll Soc Geol Ital 112:1–20

    Google Scholar 

  • Knott SD (1987) The Liguride Complex of Southern Italy — a Cretaceous to Paleogene accretionary wedge. Tectonophysics 142:217–226

    Google Scholar 

  • Laubscher H, Bernoulli D (1977) Mediterranean and Tethys. In: Nairn EM, Kanes WH (eds) The Ocean Basins and Margins. Plenum Press, New York, pp 1–28

    Google Scholar 

  • Lentini F, Carbone S, Catalano S, Monaco C (1990) Tettonica a thrust neogenica nella catena appenninico-maghrebide: esempi dalla Lucania e dalla Sicilia. Studi Geol Camerti Vol Spec:19–26

  • Lisle RJ (1985) Geological Strain Analysis. A Manual for the Rf/phi Method. Pergamon, Oxford, pp 1–99

    Google Scholar 

  • Marsella E, Pappone G, D'Argenio B, Cippitelli G, Bally AW (1992) L'origine interna dei terreni lagonegresi e l'assetto tettonico dell'Appenino meridionale. Rend Ace Sc fis e mat della Soc Naz di Sc Lett e Arti in Napoli 59:73–101

    Google Scholar 

  • Mazzoli S (1992) Structural analysis of the Mesozoic Lagonegro Units in SW Lucania (Southern Italian Apennines). Stud Geol Camerti 12:117–146

    Google Scholar 

  • Mazzoli S (1993a) Structural analysis of the Mesozoic Lagonegro units in SW Lucania, southern Apennines, Italy. PhD Thesis, Geologisches Institut ETH Zürich

  • Mazzoli S (1993b) Low-temperature deformation of fine grained limestones and quartzites, Lagonegro basin Mesozoic succession (southern Apennines, Italy). Ann Tecton 7:22–52

    Google Scholar 

  • Mazzoli S, Carnemolla S (1993) Effects of the superposition of compaction and tectonic strain during folding of a multilayer sequence — model and observations. J Struct Geol 15:277–291

    Google Scholar 

  • Monaco C, Tortorici L. Tectonic role of the internal units in the building of the Southern Apennine orogenic belt. Terra Nova, in press

  • Mostardini F, Merlini S (1986) Appennino centro meridionale. Sezioni geologiche e proposta di modello strutturale. AGIP, 73° Congresso Società Geologica Italiana, Rome, pp 1–59

  • Oertel G (1970) Deformation of a slaty lapillar tuff in the English Lake District. Geol Soc Am Bull 78:1173–1187

    Google Scholar 

  • Ogniben L (1969) Schema introduttivo alla geologia del confine calabro-lucano. Mem Soc Geol Ital 8:453–763

    Google Scholar 

  • Powell, C (1979) A morphological classification of rock cleavage. Tectonophysics 58:21–34

    Google Scholar 

  • Pozzuoli A, Scandone P, Huertas F, Linares J (1977) Risultati preliminari dello studio sui minerali argillosi triassici del Bacino Lagonegrese (Lucania, Appennino Meridionale). Geol Appl Idrogeol Bari 12:109–121

    Google Scholar 

  • Ramsay JG (1967) Folding and Fracturing of Rocks. McGrawHill, New York, pp 1–568

    Google Scholar 

  • Ramsay GJ, Wood DS (1973) The geometric effects of volume change during deformation processes. Tectonophysics 16:263–277

    Google Scholar 

  • Ramsay JG, Huber MI (1983) The Techniques of Modern Structural geology, Vol 1, Strain Analysis. Academic Press, London, pp 1–307

    Google Scholar 

  • Ramsay JG, Huber MI (1987) The Techniques of Modern Structural Geology, Vol 2, Folds and Fractures. Academic Press, London, pp 1–700

    Google Scholar 

  • Reks IJ, Gray DR (1982) Pencil structure and strain in weakly deformed mudstone and siltstone. J Struct Geol 4:161–176

    Google Scholar 

  • Reks IJ, Gray DR (1983) Strain patterns and shortening in a folded thrust sheet: an example from the southern Appalachians. Tectonophysics 93:99–128

    Google Scholar 

  • Roure F, Casero P, Vially R (1991) Growth processes and melange formation in the southern Apennines accretionary wedge. Earth Planet Sci Lett 102:395–412

    Google Scholar 

  • Sanderson DJ (1976) The superposition of compaction and plain strain. Tectonophysics 30:35–54

    Google Scholar 

  • Scandone P (1967) Studi di geologia lucana: la serie calcareo-silico-marnosa e i suoi rapporti con l'Appennino calcareo. Boll Soc Natur Napoli 76:1–175

    Google Scholar 

  • Scandone P (1972) Studi di geologia lucana: carta dei terreni della serie calcareo-silico-marnosa e note illustrative. Boll Soc Natur Napoli 81:225–300

    Google Scholar 

  • Selli R (1962) Il Paleogene nel quadro della geologia dell'Italia meridionale. Mem Soc Geol Ital 3:735–789

    Google Scholar 

  • Sgrosso I (1994) Sulla posizione paleogeografica del bacino di Lagonegro (Appennino centro-meridionale). Boll Soc Geol Ital 113:179–194

    Google Scholar 

  • Stampfli GM, Marcoux J, Baud A (1991) Tethyan margin in space and time. In: Channel JET, Winterer EL, Jansa LIT (eds) Palaeogeography and Palaeooceanography of Tethys. Palaeogeogr Palaeoecol Palaeoclimatol 87:373–409

  • Torrente MM (1988) Primi dati strutturali sui terreni della serie calcareo-silico-marnosa nel lagonegrese (Basilicata). Mem Soc Geol Ital 41:1317–1329

    Google Scholar 

  • Torrente MM (1990a) Evoluzione strutturale delle successioni calcareo-silico-marnose nei dintorni di Lagonegro. PhD Thesis, Univ Napoli

  • Torrente MM (1990b) Folding and thrusting in the calcareo-silico-marnosa sequence (Lagonegro area, southern Apennine). Mem Soc Geol Ital 45:511–517

    Google Scholar 

  • Williams PF (1976) Relationship between axial-plane foliations and strain. Tectonophysics 30:181–196

    Google Scholar 

  • Williams JR (1980) Similar and chevron folds in multilayers using finite-element and geometric models. Tectonophysics 65:323–338

    Google Scholar 

  • Wood AW (1981) Extensional tectonics and the birth of the Lagonegro basin (southern Italian Apennines). N Jb Geol Pal Abh 161:93–131

    Google Scholar 

  • Wood DS (1974) Current views of the development of slaty cleavage. Annu Rev Earth Planet Sci 2:369–401

    Google Scholar 

  • Wood DS, Oertel G, Singh J, Bennett HF (1976) Strain and anisotropy in rocks. Phil Trans R Soc London A 283:27–42

    Google Scholar 

  • Wright TO, Henderson JR (1992) Volume loss during cleavage formation in the Meguma Group, Nova Scotia, Canada. J Struct Geol 14:281–290

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzoli, S. Strain analysis in Jurassic argillites of the Monte Sirino area (Lagonegro Zone, southern Apennines, Italy) and implications for deformation paths in pelitic rocks. Geol Rundsch 84, 781–793 (1995). https://doi.org/10.1007/BF00240568

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00240568

Key words

Navigation