Skip to main content
Log in

Light-dark cycle and the response of liver temperature to cold in the rat

  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Liver temperatures of male Wistar rats were measured continuously by a copper-constantan thermocouple in a climatic chamber under LD 12:12 hr light-dark cycle. When rats were exposed to cold of 8°C in the light period, liver temperature rose in the majority of the animals, while it fell in a dark period in most cases. It was found that the response of liver temperature change to cold exposure in a light period was distinct from that in a dark period. Further, it was suggested that the response varied with time in the light-dark cycle.

Zusammenfassung

Die Lebertemperatur von männlichen Wistar Ratten in einer Klimakammer im LD 12:12 hr Licht-Dunkel Zyklus wurde mit einem Kupfer-Konstantan Thermoelement fortlaufend gemessen. Wenn die Ratten in der Lichtperiode 8°C Kälte ausgesetzt wurden, stieg die Lebertemperatur der meisten Tiere an, während sie in der Dunkelperiode in den meisten Fällen fiel. Der Reaktionsmodus des Lebertemperaturwechsels auf die Kälte ist in der Lichtperiode anders als in der Dunkelperiode. Die Reaktion scheint von der Zeit im Licht-Dunkel-Zyklus abzuhängen.

Resume

On a mesuré la façon suivie la température du foie de rats mâles de la race de Wistar soumis, en chambre climatisée, à un cycle lumière/obscurité (L:O) de 12:12 hr. Pour ce faire, on a utilisé un couple thermo-électrique cuivreconstantan. Si l'on exposait ces animaux à une température de 8°C durant la période de lumière, la température du foie augmentait dans la plupart des cas pour s'abaisser dans l'obscurité. Le processus de variation due au froid de la température du foie est différente à la lumière de ce qu'il est dans l'obscurité. Cette réaction semble en outre dépendre du cycle LO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASCHOFF, J. (1965): Response curves in circadian periodicity. In: Circadian Clocks. J.Aschoff (ed.), North-Holland Publ. Co., Amsterdam, 95.

    Google Scholar 

  • FABINYI-SZEBEHELY, M. and SZEBEHELY, J. (1952): The influence of antihistamines on the effect of histamine upon body temperature and oxygen consumption in mice and rats. Acta Physiol. Scand., 27: 1–9.

    Google Scholar 

  • FEDOROV, N.A. and SHUR, E.I. (1942): The role of the viscera in regulating the temperature of the body of an animal under physiological and pathological conditions. Amer.J. Physiol., 137: 30–38.

    Google Scholar 

  • GELINEO, S. (1964): Organ systems in adaptation: the temperature regulating system. In: Adaptation to the Environment. Handbook of Physiology, Section 4. D.B.Dill (ed.), Amer.Physiol.Soc., Washington, D.C., 260–266.

    Google Scholar 

  • GRAF, W. (1959): Patterns of human liver temperature. Acta Physiol. Scand., 46, Suppl. 160: 59.

    Google Scholar 

  • GRAYSON, J. and MENDEL, D. (1956): The distribution and regulation of temperature in the rat. J.Physiol. (Lond.), 133: 334–346.

    Google Scholar 

  • GYERMEK, L. (1950): Die Wirkung des Histamins auf den Gasstoffwechsel und die Körpertemperatur. Arch.exper.Path.Pharmakol., 209: 456–464.

    Google Scholar 

  • HALBERG, F., HALBERG, E., WARGO, D.C. and VISSCHER, M.B. (1953): Eosinophil levels in dogs with surgically established arteriovenous anastomoses. Amer.J.Physiol., 174: 313–315.

    Google Scholar 

  • HALBERG, F., FRANTZ, M.J. and BITTNER, J.J. (1957): Phase difference between 24-hr rhythms in cortical adrenal mitoses and blood eosinophils in the mouse. Anat.Rec., 129: 349–356.

    Google Scholar 

  • HALBERG, F., PETERSON, R.E. and SILBER, R.H. (1959): Phase relations of 24-hr periodicities in blood corticosterone, mitoses in cortical adrenal parenchyma and total body activity. Endocrinology, 64: 222–230.

    Google Scholar 

  • HALBERG, F., JOHNSON, E.A., BROWN, B.W. and BITTNER, J.J. (1960): Susceptibility rhythm to E. coli endotoxin and bioassay. Proc.Soc.Exp. Biol. (N.Y.), 103: 142–144.

    Google Scholar 

  • MILES, G.H. (1962): Telemetering techniques for periodicity studies. Ann. N.Y. Acad.Sci., 98: 858–865.

    Google Scholar 

  • MÜHLEMANN, H.R., MARTHALER, T.M. and LOUSTALOT, P. (1955): Daily variation in mitotic activity of adrenal cortex, thyroid and oral epithelium of the rat. Proc.Soc. Exp. Biol. (N.Y.), 90: 467–468.

    Google Scholar 

  • PAULY, J.E. and SHEVING, L.E. (1965): Daily leucocyte rhythms in normal and hypophysectomized rats to different environmental light-dark schedules. Anat.Rec., 153: 349–360.

    Google Scholar 

  • PIZZARELLO, D.J., ISAAK, D., KIAN ENG CHUA and RHYNE, A.L. (1964): Circadian rhythmicity in the sensitivity of two strains of mice to whole body radiation. Science, 145: 286–291.

    Google Scholar 

  • SPANG, K., OBRECHT, V. and EY, W. (1952): Über den Wert einer Messung der Temperatur des Magens für die Beurteilung seiner Durchblutung. Klin. Wschr., 30: 210–214.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A part of this study was reported at the Fifth International Biometeorological Congress, Montreux, Switzerland, 31 August – 6 September 1969.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kikuchi, M., Chiba, M. & Yoshida, A. Light-dark cycle and the response of liver temperature to cold in the rat. Int J Biometeorol 17, 41–49 (1973). https://doi.org/10.1007/BF01553644

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01553644

Keywords

Navigation