Skip to main content
Log in

Simulation of normal distributed smooth fields by Karhunen-Loéve expansion in combination with kriging

  • Originals
  • Published:
Stochastic Hydrology and Hydraulics Aims and scope Submit manuscript

Abstract

Simulation of multigaussian stochastic fields can be made after a Karhunen-Loéve expansion of a given covariance function. This method is also called simulation by Empirical Orthogonal Functions. The simulations are made by drawing stochastic coefficients from a random generator. These numbers are multiplied with eigenfunctions and eigenvalues derived from the predefined covariance model. The number of eigenfunctions necessary to reproduce the stochastic process within a predefined variance error, turns out to be a cardinal question. Some ordinary analytical covariance functions are used to evaluate how quickly the series of eigenfunctions can be truncated. This analysis demonstrates extremely quick convergence to 99.5% of total variance for the 2nd order exponential (‘gaussian’) covariance function, while the opposite is true for the 1st order exponential covariance function. Due to these convergence characteristics, the Karhunen-Loéve method is most suitable for simulating smooth fields with ‘gaussian’ shaped covariance functions. Practical applications of Karhunen-Loéve simulations can be improved by spatial interpolation of the eigenfunctions. In this paper, we suggest interpolation by kriging and limits for reproduction of the predefined covariance functions are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braud, I.; Obled, C. 1991: On the use of Empirical Orthogonal Function (EOF) analysis in the simulation of random fields. Stochastic Hydrol. Hydraul. 5, 125–134

    Article  Google Scholar 

  • Creutin, J.D.; Obled, C. 1982: Objective analysis and mapping techniques for rainfall fields: An objective comparison. Water Resour. Res. 18(2), 413–431

    Google Scholar 

  • Christakos, G. 1992: Random Field Models in Earth Sciences, Academic Press, Inc. U.S.A. ISBN 0-12-174230-X

    Google Scholar 

  • Dagan, G. 1989: Flow and Transport in Porous Formations. Springer-Verlag, Berlin. ISBN 3-540-51602-6

    Google Scholar 

  • Davenport, W.B.; Root, W.L. 1958: An Introduction to the Theory of Random Signals and Noise, McGraw-Hill, New York

    Google Scholar 

  • Davis, R.E. 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific ocean. J. Phys. Ocean. 6(3), 249–266

    Article  CAS  Google Scholar 

  • Fortius, M.I. 1973; Statisticheski ortogonalnye funktsii stohasticheskogo processa v zamknutom intervale. (Statistical orthogonal functions of a stochastic process on a closed interval) Fizika Atmosfery i Okeana Vol IX(l), (in Russian)

  • Fortius, M.I. 1975; Statisticheski ortogonalnye funktsii stohasticheskogo polia, opredelennye dlia zamknutogo prostranstva. (Statistical orthogonal functions of a stochastic field, determined for a closed space) Fizika Atmosfery i Okeana Vol XI(11), (in Russian)

  • Gomez-Hernandez, J.J.; Srivastava, R.M. 1990: ISIM3D: An ANSI-C three-dimensional multiple indicator conditional simulation program. Com. and Geosci. 16(4), 395–440

    Article  Google Scholar 

  • Gottschalk, L. 1993: Correlation and covariance of runoff. Stochastic Hydrol. Hydraul. 7, 85–101

    Article  Google Scholar 

  • Hisdal, H.; Tveito, O.E. 1992: Generation of runoff series at ungauged locations using empirical orthogonal functions in combination with kriging. Stochastic Hydrol. Hydraul. 6, 255–269

    Article  Google Scholar 

  • Hisdal, H.; Tveito, O.E. 1993: Extension of runoff series using empirical orthogonal functions. Hydrol. Sci. J. 38(1), 33–49

    Google Scholar 

  • Holmström, I. 1963: On the method for parametric representation of the state of the atmosphere. Tellus, XV, 127–149

    Article  Google Scholar 

  • Holmström, I. 1969: Extrapolation of meteorological data. Serie Meteorologi Nr 22, Sveriges Meteorologiska och Hydrologiska Institut, Stockholm, Sweden

    Google Scholar 

  • Holmström, I. 1970: Analysis of time series by means of empirical orthogonal functions. Tellus, XXII, 638–647

    Google Scholar 

  • Holmström, I.; Stokes, J. 1978: Statistical Forecasting of Sea Level Changes in the Baltic, SMHI Rapporter, Meteorologi och klimatologi, Nr RMK 9, Sveriges Meteorologiska och Hydrologiska Institut, Norrköping, Sweden

    Google Scholar 

  • Johansen, G. 1993: Simulation algorithms for gaussian related random functions. M.Sc. Thesis in Mathematical Statistics, NTH, University of Trondheim, Norway

    Google Scholar 

  • Journel, A.G. 1983: Nonparametric Estimation of Spatial Distributions. Math. Geol., 15(3), 445–468

    Article  Google Scholar 

  • Journel, A.G.; Alabert, F. G. 1990: New method for reservoir mapping, J. Petr. Tech., Febr., 221–218

  • Mantoglou, A. 1987: Digital simulation of multivariate two- and three-dimensional stochastic processes with a spectral turning bands method. Math. Geol., 19(2), 129–149

    Google Scholar 

  • Mantoglou, A; Wilson, J.L 1982: The turning bands method for simulation of random fields using line generation by spectral method. Water Resour. Res. 18(5), 1379–1394

    Google Scholar 

  • Matheron, G. 1973: The intrinsic random functions and their applications. Adv. Appl. Probab. 5, 439–468

    Article  Google Scholar 

  • Obled, C.; Creutin, J.D. 1986: Some developments in the use of empirical orthogonal functions for mapping meteorological fields. J. Climate Appl. Meteor. 25(9), 1189–1204

    Article  Google Scholar 

  • Omre, H.; Sölna, K; Tjelmeland, H. 1991: Simulation of random functions on large lattices. SAND/04/1991 Norwegian Computing Center, Norway

    Google Scholar 

  • Press, W.H.; Teukolsky, S.A.; Vetterling, W.T., Flannery, B.P. 1992: Numerical Recipes in C, The art of Scientific Computing. 2nd edition, Cambridge University Press, New York

    Google Scholar 

  • Rubin, Y.; Journel, A.G. 1991: Simulation on non-gaussian space random functions for modeling transport in groundwater. Water Resour. Res. 27(7), 1711–1721

    Article  Google Scholar 

  • Storch, H.v.; Hannoschöck, G. 1985: Statistical aspects of estimated principal vectors (eofs) based on small sample sizes. J. Clim. Appl. Meteror., 24, 716–724

    Article  Google Scholar 

  • Tompson, A.F.B.; Ababou, R.; Gelhar, L.W. 1989: Implementation of the three-dimensional turning bands random field generator. Water Resour. Res. 25(10), 2227–2243

    Article  Google Scholar 

  • Wilkinson, J.H..; Reinsch, C. 1971: Linear Algebra, vol. II of Handbook for Automatic Computation. Springer Verlag, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitterrød, NO., Gottschalk, L. Simulation of normal distributed smooth fields by Karhunen-Loéve expansion in combination with kriging. Stochastic Hydrol Hydraul 11, 459–482 (1997). https://doi.org/10.1007/BF02428429

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02428429

Key words

Navigation