Skip to main content
Log in

Crystallization of Mount St. Helens 1980–1986 dacite: A quantitative textural approach

  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Quantitative measurements of crystal size distributions (CSDs) have been used to obtain kinetic information on crystallization of industrial compounds (Randolph and Larson 1971) and more recently on Hawaiian basalts (Cashman and Marsh 1988). The technique is based on a population balance resulting in a differential equation relating the population densityn of crystals to crystal sizeL, i.e., at steady staten =n o exp(−L/itGτ), wheren o is nucleation density,G is the average crystal growth rate,τ is the average growth time, and the nucleation rateJ =n o G. CSD (Inn vsL) plots of plagioclase phenocrysts in 12 samples of Mount St. Helens “blast” dacite and 14 samples of dacite from the 1980–1986 Mount St. Helens dome are similar and average = 9.6 (± 1.1) × 10−3 cm andn o = 1−2 × 106 cm−4. Reproducibility of the measurements was tested by measuring CSDs of 12 sections cut from a single sample in three mutually perpendicular directions; precision of the size distributions is good in terms of relative, but not necessarily absolute values (± 10%). Growth and nucleation rates for plagioclase have been calculated from these measurements using time brackets ofτ = 30–150 years; growth ratesG are 3−10 × 10−12cm/s, and nucleation ratesJ are 5−21 × 10−6/cm3 s.G andJ for Fe-Ti oxides calculated from CSD data areG = 2−13 ± 10−13 cm/sec andJ = 7−33 × 10−5/cm3 s, respectively. The higher nucleation rate and lower growth rate of oxides resulted in a smaller average crystal size than for plagioclase. Sizes of plagioclase microlites (<0.01 mm) in the blast dacite groundmass have been measured from backscatter SEM photographs. Nucleation of these microlites was probably triggered by intrusion of material into the cone of Mount St. Helens in spring 1980. This residence time of 52 days gives minimum crystallization estimates ofG = 1−3 × 10−11 cm/s andJ = 9−16 × 1O3/cm3 s. The skeletal form of the microlites provides evidence for nucleation and growth at high values of undercooling (ΔT) relative to the phenocrysts. A comparison of nucleation and growth rates for the two crystal populations (phenocrysts vs microlites) suggests that while growth rate seems to be only slightly affected by changes inΔT, nucleation rate is a very strong function of undercooling. A comparison of plagioclase nucleation and growth rates measured in the Mount St. Helens dacite and in basalt from Makaopuhi lava lake in Hawaii suggests that plagioclase nucleation rates are not as dependent on composition. Groundmass textures suggest that plagioclase microphenocrysts crystallized at depth rather than in the conduit, in the dome, or after extrusion onto the surface. Most of this crystallization appears to be in the form of crystal growth (coarsening) of groundmass microphenocrysts at small degrees of undercooling rather than extensive nucleation of new crystals. This continuous crystallization in a shallow magmatic reservoir may provide the “overpressurization” needed to drive the continuing periodic domebuilding extrusions, which have been the pattern of activity at Mount St. Helens since December 1980.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett JT, Krishnaswami S, Turekian KK, Melson WG, Hopson CA (1982) The uranium and thorium decay series nuclides in Mt. Helens effusives. Earth Plan Sci Lett 60:61–69

    Google Scholar 

  • Brandeis G, Jaupart C, Allegre CJ (1984) Nucleation, crystal growth and the thermal regime of cooling magmas. J Geophys Res 89:10161–10177

    Google Scholar 

  • Brandeis G, Jaupart C (1987) The kinetics of nucleation and crystal growth and scaling laws for magmatic crystallization. Contrib Mineral Petrol 96:24–34

    Google Scholar 

  • Carey S, Sigurdsson H (1985) The May 18, 1980 eruption of Mount St. Helens 2. Modeling of dynamics of the Plinian phase. Jl Geophys Res 90:2948–2958

    Google Scholar 

  • Cashman KV (1986) Crystal size distributions in igneous and metamorphic rocks. Unpubl PhD thesis, Johns Hopkins University

  • Cashman KV, Taggart JE (1983) Petrologic monitoring of 1981 and 1982 eruptive products from Mount St. Helens. Science 221:1385–1387

    Google Scholar 

  • Cashman KV, Ferry JM (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization III. Metamorphic crystallization. Contrib Mineral Petrol (Accepted)

  • Cashman KV, Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II. Makaopuhi lava lake. Contrib Mineral Petrol (Accepted)

  • Chadwick WW, Swanson DA, Iwatsubo EY, Heliker CC, Leighley TA (1983) Deformation monitoring at Mount St. Helens in 1981 and 1982. Science 221:1378–1380

    Google Scholar 

  • Christiansen RL, Peterson DW (1981) Chronology of the 1980 eruptive activity. USGS Prof Paper 1250:17–30

    Google Scholar 

  • Criswell CW (1987) Chronology and pyroclastic stratigraphy of the May 18, 1980 eruption of Mount St. Helens, Washington. Jl Geophys Res 92:10237–10266

    Google Scholar 

  • Dowty E (1980) Crystal growth and nucleation theory and the numerical simulation of igneous crystallization. In: Hargraves RB (ed) The Physics of Magmatic Processes, Princeton pp 419–485

  • Eichelberger JC, Hays DB (1982) Magmatic model for the Mount St. Helens blast of May 18, 1980. Jl Geophys Res 87:7727–7738

    Google Scholar 

  • Endo ET, Dzurisin D, Murray T, Syverson K (1987) The rate of magma ascent during dome building at Mount St. Helens (abstr) Hawaii symposium on How Volcanoes Work, Hilo, Hawaii p 33

  • Friel JJ (1987) Computer-aided imaging of basaltic glass. Microbeam Analysis - 1987:325–326

  • Friel JJ, Kacandes GH, Grandstaff DE, Ulmer GC (1986) Image analysis of an Icelandic basalt. Geol Soc Amer Abstracts with Programs 18:606

    Google Scholar 

  • Heliker CC (1984) Inclusions in the 1980–1983 dacite of Mount St. Helens, Washington. MS Thesis, Western Washington University, 185 pp

  • Hoblitt RP, Miller CD, Vallance JW (1981) Origin and stratigraphy of the deposit produced by the May 18 directed blast. USGS Prof Paper 1250:401–419

    Google Scholar 

  • Kirkpatrick RJ (1977) Nucleation and growth of plagioclase, Makaopuhi and Alae lava lakes, Kilauea Volcano, Hawaii. Geol Soc Amer Bull 88:78–84

    Google Scholar 

  • Kirkpatrick RJ (1981) Kinetics of crystallization of igneous rocks. In: Lasaga AC, Kirkpatrick RJ (eds) Kinetics of Geochemical Processes, Reviews in Mineralogy vol. 8, pp 321–398

    Google Scholar 

  • Kuntz MA, Rowley PD, MacLeod NS, Reynolds RL, MacBroome LA, Kaplan AM, Lidke DJ (1981) Petrography and particle-size distribution of pyroclastic-flow ash-cloud, and surge deposits. USGS Prof Paper 1250:525–539

    Google Scholar 

  • Lipman PW, Morre JG, Swanson DA (1981a) Bulging of the north flank before the May 18 eruption - geodetic data. USGS Prof Paper 1250:143–155

    Google Scholar 

  • Lipman PW, Norton DR, Taggart JE, Brandt EL, Engleman EE (1981b) Compositional variations in 1980 magmatic deposits. USGS Prof. Paper 1250:631–640

    Google Scholar 

  • Lofgren GE (1980) Experimental studies on the dynamic crystallization of silicate melts. In: Hargraves RB (ed) The Physics of Magmatic Processes, Princeton, pp 487–551

  • Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization I. Theory. Contrib Mineral Petrol (Accepted)

  • Melson WG (1983) Monitoring the 1980–82 eruptions of Mount St. Helens: Compositions and abundances of glass. Science 221:1387–1391

    Google Scholar 

  • Moore JG, Albee WC (1981) Topographic and structural changes, March–July 1980 — photogrammetric data. USGS Prof Paper 1250:123–134

    Google Scholar 

  • Moore JG, Lipman PW, Swanson DA, Alpha TR (1981) Growth of lava domes in the crater, June 1980–January 1981. USGS Prof Paper 1250:541–547

    Google Scholar 

  • Moore JG, Sisson TW (1981) Deposits and effects of the May 18 pyroclastic surge. USGS Prof Paper 1250:421–438

    Google Scholar 

  • Naslund HR, Conrad HE, Urquhard J, Turner PA (1986) Computer simulation of apparent grain sizes in thin sections — applications to grain size variation in the Skaergaard Intrusion. (abst) EOS 67:384

    Google Scholar 

  • Randolph AD, Larson MA (1971) Theory of Particulate Processes. Academic Press, New York, 251 pp

    Google Scholar 

  • Rutherford MJ, Sigurdsson H, Carey S, Davis A (1985) The May 18, 1980, eruption of Mount St. Helens 1. Melt composition and experimental phase equilibria. J Geophys Res 90:2929–2947

    Google Scholar 

  • Saltykov SA (1967) The determination of the size distribution of particles in an opaque material from a measurement of the size distribution of their sections. In: Elias H (ed) Stereology. Proc 2nd Int Cong for Stereology, Springer, Berlin Heidelberg New York p 163

    Google Scholar 

  • Scandone R, Malone SD (1985) Magma supply, magma discharge and readjustment of the feeding system of Mount St. Helens during 1980. J Volcan Geotherm Res 23:239–262

    Google Scholar 

  • Shaw HR (1965) Comments on viscosity, crystal settling and convection in granitic magmas. Amer J Sci 263:120–152

    Google Scholar 

  • Swanson DA, Holcomb RT (1985) Regularities in the growth of Mount St. Helens' dome (abstr). Abstracts with Programs, Geol Soc Amer 17:411

    Google Scholar 

  • Swanson DA, Dzurisin D, Holcomb RT, Iwatsubo EY, Chadwick WW, Casadevall TJ, Ewert JW, Heliker CC (1987) Growth of the lava dome at Mount St. Helens, Washington (US), 1981–1983. Spec Pap Geol Soc Amer 212:1–16

    Google Scholar 

  • Underwood EE (1970) Quantitative Stereology. Addison-Wesley Massachusetts, 274 pp

    Google Scholar 

  • Wright TL, Okamura RT (1977) Cooling and crystallization of tholeiitic basalt, 1965 Makaopuhi lava lake, Hawaii. US Geol Surv Prof Paper 1004, 78 pp

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cashman, K.V. Crystallization of Mount St. Helens 1980–1986 dacite: A quantitative textural approach. Bull Volcanol 50, 194–209 (1988). https://doi.org/10.1007/BF01079682

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01079682

Keywords

Navigation