Skip to main content
Log in

Photoperiodism and the photic environment of the pitcher-plant mosquito, Wyeomyia smithii

  • Published:
Oecologia Aims and scope Submit manuscript

Summary

Wyeomyia smithii Coq. (Diptera: Culicidae) overwinters as a larva in a state of diapause which is initiated, maintained, and terminated by photoperiod. Both in the dawn and in the dusk, diapausing larvae are photoperiodically most sensitive to blue light (390–450 nm) with a shoulder in response in the bluegreen and green (480–540 nm) region of the spectrum. The saturation curves for response to blue light in the dusk has a steeper slope than for response to blue-green and green light in the dusk, suggesting two distinct pigments or pigment complexes underly photoperiodic response in W. smithii.

The photic environment of W. smithii during twilight is rich in yellow-green light but sufficient light is available at 390–540 nm to trigger photoperiodic response early during morning civil twilight and to sustain response until late in evening civil twilight. Comparison of action spectra with spectra of available light indicates that the zenith angles of the sun which would result in 50% response are 95°48′ and 94°52′ in the dawn and dusk, respectively. Using these zenith angles to approximate daylength in nature provides a resonable prediction of development in the field.

The flux density of photons necessary to elicit 50% development a 454 nm is about 9×107 photons/cm2 s in the dawn and 3×108 photons/cm2 s in the dusk. This high degree of sensitivity enables W. smithii to cue to the rapidly changing light intensity which occurs around the nautical-civil twilight transition. At the same time, the chromophore is not likely to be stimulated by the light of the full moon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker, R.J., Cohen, C.F., Mayer, A.: Photoflashes: A potential new tool for control of insect populations. Science 145, 1195–1197 (1964)

    Google Scholar 

  • Beach, R.F., Craig, G.B.: Photoinhibition of diapause in field populations of Aedes atropalpus. Environ. Entomol. 8, 392–396 (1979)

    Google Scholar 

  • Beck, S.D.: Insect photoperiodism. New York: Academic Press 1968

    Google Scholar 

  • Bradshaw, W.E.: Action spectra for photoperiodic response in a diapausing mosquito. Science 172, 1361–1362 (1972)

    Google Scholar 

  • Bradshaw, W.E.: Photoperiodic control of development in Chaoborus americanus with special reference to photoperiodic action spectra. Biol. Bull. 146, 11–19 (1974)

    Google Scholar 

  • Bradshaw, W.E., Holzapfel, C.M.: Interaction between photoperiod, temperature, and chilling in dormant larvae of the treehole mosquito, Toxorhynchites rutilus Coq. Biol. Bull. 152, 147–158 (1977)

    Google Scholar 

  • Bradshaw, W.E., Lounibos, L.P.: Photoperiodic control of development in the pitcher-plant mosquito, Wyeomyia smithii. Can. J. Zool. 50, 713–719 (1972)

    Google Scholar 

  • Bradshaw, W.E., Lounibos, L.P.: Evolution of dormancy and its photoperiodic control in pitcher-plant mosquitoes. Evolution 31, 546–567 (1977)

    Google Scholar 

  • Bünning, E.: The adaptive value of circadian leaf movements. In: Biochronometry (M. Menaker, ed.), pp. 203–211. Washington: National Academy of Sciences 1971

    Google Scholar 

  • Bünning, E., Joerrens, G.: Tagesperiodische antagonistiche Schwankungen der Blau-violett- und Gelbrot-empfindlichkeit als Grundlage der photoperiodischen diapause-Induktion bei Pieris brassicae. Zeit. Naturforsch. 15, 205–213 (1960)

    Google Scholar 

  • Claret, J.: Sensibilité spectrale des chenilles de Pieris brassicae (L.) lors de l'induction photopériodique de la diapause. C. R. Acad. Sci. Paris. Serie D 274, 1727–1730 (1972)

    Google Scholar 

  • Claret, J.: Le domaine de photosensibilité due parasite Pimpla instigator F. (Hymenoptère, Ichneumonidae) lors de l'entrée et de la levée photopériodiques de la diapause. C. R. Acad. Sci. Paris Serie D 276, 3163–3166 (1973a)

    Google Scholar 

  • Claret, J.: La levée photopériodique de la diapause nymphale de Pieris brassicae (L.). C. R. Acad. Sci. Paris Serie D 277, 733–735 (1973b)

    Google Scholar 

  • Dickson, R.C.: Factors governing the induction of diapause in the oriental fruit moth. Ann. Entomol. Soc. Amer. 42, 511–537 (1949)

    Google Scholar 

  • Evans, K.W., Brust, R.A.: Induction and termination of diapause in Wyeomyia smithii (Deptera: Culicidae), and larval survival studies at low and subzero temperatures. Can. Entomol. 104, 1937–1950 (1972)

    Google Scholar 

  • Galston, A.W.: Plant photobiology in the last half-century. Plant Physiol. 54, 427–436 (1974)

    Google Scholar 

  • Geyspitz, K.F.: On the mechanism of light stimuli perception during photoperiodic reaction in caterpillars of Lepidoptera. Zool. Zhur. 36, 548–549 (1957)

    Google Scholar 

  • Harris, F.A., Lloyd, E.B., Lane, H.C., Burt, E.C.: Influence of light on diapause in the boll weevil. II. Dependence of diapause response on narrow bands of visible radiation and a broad band of infrared radiation used to extend the photoperiod. J. Econ. Entomol. 62, 854–857 (1969)

    Google Scholar 

  • Hayes, D.K.: Action spectra for breaking diapause and absorption spectra of insect brain tissue. In: Biochronometry (M. Menaker, ed.), pp. 392–402. Washington: National Academy of Sciences 1971

    Google Scholar 

  • Hendricks, S.B., Borthwick, H.A.: The function of phytochrome in regulation of plant growth. Proc. Nat. Acad. Sci. U.S. 58, 2125–2130 (1967)

    Google Scholar 

  • Kogure, M.: Influence of light and temperature on certain characters of the silkworm, Bombyx mori. J. Dept. Agric. Kyushu Imp. Univ. 4, 1–93 (1933)

    Google Scholar 

  • Lees, A.D.: Photoperiodic timing mechanisms in insects. Nature 210, 986–989 (1966)

    Google Scholar 

  • Lees, A.D.: The relevance of action spectra in the study of insect photoperiodism. In: Biochronometry (M. Menaker, ed.), pp. 372–380. Washington: National Academy of Sciences 1971

    Google Scholar 

  • Lounibos, L.P., Bradshaw, W.E.: A second diapause in Wyeomyia smithii: seasonal incidence and maintenance by photoperiod. Can. J. Zool. 53, 215–221 (1975)

    Google Scholar 

  • Mangum, C.L., Earle, N.W., Newson, L.D.: Photoperiodic induction of diapause in the boll weevil Anthonomus grandis. Ann. Entomol. Soc. Amer. 61, 1125–1128 (1968)

    Google Scholar 

  • Mitrakos, K., Shropshire, W. (eds.): Phytochrome. New York: Academic Press 1972

    Google Scholar 

  • Müller, H.J.: Über die Wirkung verschiedener Spektralbereiche bei der photoperiodischen Induktion der Saisonformen von Euscelis olebejus Fall. (Homoptera: Jassidae). Zool. Zb. 70, 411–426 (1964)

    Google Scholar 

  • Munz, F.W., McFarland, W.N.: The significance of spectral position in the rhodopsins of tropical marine fishes. Vis. Res. 13, 1829–1874 (1973)

    Google Scholar 

  • Nielsen, E.T.: Illumination at twilight. Oikos 14, 9–21 (1963)

    Google Scholar 

  • Norris, K.H., Howell, F., Hayes, D.K., Adler, V.E., Sullivan, W.N., Schecter, M.S.: The action spectra for breaking diapause in the codling moth, Laspeyresia pomonella (L.), and the oak silkworm, Antheraea pernyi Guer. Proc. Nat. Acad. Sci. U. S. 63, 1120–1127 (1969)

    Google Scholar 

  • Pittendrigh, C.S., Eichorn, J.H., Minis, D.H., Bruce, V.G.: Circadian systems, VI. Photoperiodic time measurement in Pectinophora gossypiella. Proc. Nat. Acad. Sci. U. S. 66, 758–764 (1974)

    Google Scholar 

  • Rozenberg, G.V.: Twilight. A study in atmospheric optics. New York: Plenum Press 1966

    Google Scholar 

  • Saunders, D.S.: Spectral sensitivity and intensity thresholds in Nasonia photoperiodic clock. Nature 253, 732–734 (1975)

    Google Scholar 

  • Smith, S.M., Brust, R.A.: Photoperiodic control of maintenance and termination of larval diapause in Wyeomyia smithii (Coq.) (Diptera: Culicidae) with notes on oogenesis in the adult female. Can. J. Zool. 49, 1065–1073 (1971)

    Google Scholar 

  • Tauber, M.J., Tauber, C.A.: Natural daylengths regulate insect seasonality by two mechanisms. Nature 258, 711–712 (1975)

    Google Scholar 

  • Tauber, M.J., Tauber, C.A.: Insect seasonality: diapause maintenance, termination, and post-diapause development. Ann. Rev. Entomol. 21, 81–107 (1976)

    Google Scholar 

  • Vinogradova, E.B.: The pattern of reactivation of diapausing larvae in the blowfly, Calliphora vicina. J. Insect Physiol. 20, 2487–2496 (1975)

    Google Scholar 

  • Wilde, J.E. de, Bonga, H.: Observations on threshold intensity to different wave lengths of photoperiodic response in the Colorado beetle (Leptinotarsa decemlineata Say). Entomol. Expl. Appl. 1, 301–307 (1958)

    Google Scholar 

  • Williams, C.M., Adkisson, P.L.: Physiology of insect diapause. XIV. An endocrine mechanism for the photoperiodic control of pupal diapause in the oak silkworm, Antheraea pernyi. Biol. Bull. 128, 511–525 (1964)

    Google Scholar 

  • Williams, C.M., Adkisson, P.L., Walcott, C.: Physiology of insect diapause. XV. The transmission of photoperiod signals to the brain of the oak silkworm, Antheraea peryi. Biol. Bull. 128, 497–507 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradshaw, W.E., Phillips, D.L. Photoperiodism and the photic environment of the pitcher-plant mosquito, Wyeomyia smithii . Oecologia 44, 311–316 (1979). https://doi.org/10.1007/BF00545233

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00545233

Keywords

Navigation