Skip to main content
Log in

Physiological control of water flux in conifers

A computer simulation model

  • Published:
Oecologia Aims and scope Submit manuscript

Summary

A water flux model with daily resolution is described which permits one to assess how changes in the rooting volume, amount of sapwood, leaf area and conductance properties interact to affect water uptake, internal storage, and transpiration.

A root zone water compartment is defined for a particular tree on the basis of root depth, lateral extension and moisture holding characteristics of the soil. Water is taken up from different subcompartments of the root zone as a function of vertical position, soil water content, and water deficit within the sapwood. Excess water entering the root zone is channeled into runoff or seepage.

The sapwood compartment of the model is restricted to the main stem of the tree and does not include sapwood in the branches or roots. The model assumes whatever water deficit is built up in the sapwood during the day will be replenished at night if the root zone water supply/capacity ratio exceeds 20%. A complex exponential equation describes the amount of water extractable from 20% to 0 capacity when no uptake is possible. The maximum change in volume of water in the sapwood of a large Douglas-fir is estimated to represent more than a 10 day supply for transpiration.

Water loss through transpiration is predicted as a function of the mean daily absolute humidity deficit, leaf area, leaf conductance and daylength. Leaf conductance is controlled by predawn plant moisture stress which in turn is a function of the rooting zone water supply.

The model incorporates two special constraints upon water uptake and transpiration. The first accounts for the effect of cold soil temperatures reducing the possible uptake by Douglas-fir to half at 2°C and to 0 at-2°C. The second represents a critical absolute humidity deficit sufficient to cause stomatal closure which results in leaf conductance being reduced to a minimum.

The model is employed to compare trees of different sizes and those with different stomatal behavior. From this experience, it is suggested that future studies include, at a minimum, simultaneous measurements of: absolute humidity deficit, leaf area, sapwood volume and change in water content, predawn stress and leaf conductance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babalola, O., Boersma, L., Youngberg, C. T.: Photosynthesis and transpiration of Monterey pine seedlings as a function of soil water suction and soil temperature. Plant Physiol. 43, 515–521 (1968)

    Google Scholar 

  • Benecke, U.: Physiologische Untersuchungen zur Eignung verschiedener Baumarten bei der Aufforstung in Hochlagen. Müchen: Forstliche Forschungsanstalt 1972

    Google Scholar 

  • Boersma, L. L., DeBacker, L. W., Krygier, J. T.: A comparison of water use rates by Douglasfir and Oregon white oak. In preparation (1975)

  • Chalk, L., Bigg, J. M.: The distribution of moisture in the living stem in Sitka spruce and Douglas-fir. Forestry 29, 5–21 (1956)

    Google Scholar 

  • Clark, J., Gibbs, R. D.: Studies in tree physiology. IV. Further investigations of seasonal changes in moisture contents of certain Canadian forest trees. Canad. J. Bot. 35, 219–253 (1957)

    Google Scholar 

  • Cleary, B. D.: The effect of plant moisture stress on physiology and establishment of planted Douglas-fir and ponderosa pine seedlings. Ph. D. Thesis, Oregon State University, Corvallis, 85 p. (1970)

    Google Scholar 

  • Dainty, J.: The water relations of plants, p. 421–452. In: Physiology of plant growth and development, M. Wilkins, ed. New York: McGraw-Hill 1969

    Google Scholar 

  • Doley, B.: Water relations of Eucalyptus marginata Sm., under natural conditions. J. Ecol. 55, 597–614 (1967)

    Google Scholar 

  • Drew, A. P., Drew, L. G., Fritts, H. C.: Environmental control of stomatal activity in mature semiarid site ponderosa pine. Ariz. Acad. Sci. 7, 85–93 (1972)

    Google Scholar 

  • Gates, D. M.: Transpiration and leaf temperature. Ann. Rev. Plant Physiol. 19, 211–238 (1968)

    Google Scholar 

  • Gibbs, R. D.: Patterns in the seasonal water content of trees, p. 43–69. In: The physiology of forest trees, K. V. Thimann, ed. New York: Ronald Press 1958

    Google Scholar 

  • Grier, C. C., Waring, R. H.: Conifer foliage mass related to sapwood area. For. Sci. 20, pp. 205–206 (1974)

    Google Scholar 

  • Havranek, W.: Über die Bedeutung der Bodentemperatur für die Photosynthese und Transpiration junger Forstpflanzen und die Stoffproduktion an der Waldgrenze. Angew. Bot. 46, 101–116 (1972)

    Google Scholar 

  • Hinckley, T. M., Ritchie, G. A.: A theoretical model for calculation of xylem sap pressure from climatological data. Amer. Midland Naturalist 90, 56–69 (1973)

    Google Scholar 

  • Jarvis, P. G.: The estimation of resistances to carbon dioxide transfer, p. 566–631. In: Plant photosynthesis production manual of methods, Z. Sěstak, J. Čatský, P. G. Jarvis, eds. The Hague: Junk 1971

    Google Scholar 

  • Kline, J. R., Reed, K. L., Waring, R. H., Stewart, M. L.: Field measurement of transpiration in Douglas fir. J. appl. Ecol. (submitted, 1975)

  • Kozlowski, T. T.: Introduction, p. 1–18. In: Water deficits and plant growth, T. T. Kozlowski, ed. New York: Academic Press 1972

    Google Scholar 

  • Lassen, L. E., Okkonen, E. A.: Sapwood thickness of Douglas-fir and five other western softwoods. U.S.F.S., F.P.L. 124, 16 p. (1969)

  • Lassoie, J. P.: Diurnal dimensional fluctuations in a Douglas-fir stem in response to tree water status. For. Sci. 19, 251–255 (1973)

    Google Scholar 

  • Markstrom, D. C., Hann, R. A.: Seasonal variation in wood permeability and stem moisture content of three Rocky Mountain softwoods. U.S.F.S. Res. Note RM-212, 7 p. (1972)

  • Peck, M. E.: A manual of the higher plants of Oregon, 866 p. Portland, Oregon: Binfords and Mort 1961

    Google Scholar 

  • Philip, J. R.: Plant water relations: some physical aspects. Ann. Rev. Plant Physiol. 17, 245–268 (1966)

    Google Scholar 

  • Rawlings, S. L.: Resistance to water flow in the transpiration stream, p. 69–85. In: Stomata and water relations of plants, I. Zelitch, ed., Bull. Conn. Agr. Expt. Sta. 644 (1963)

  • Reed, K. L.: The effects of sub-zero temperatures on the stomata of Douglas-fir. M. S. Thesis, University of Washington, Seattle, 79 p. (1968)

    Google Scholar 

  • Reed, K. L.: A computer simulation model of seasonal transpiration in Douglas-fir based on a model of stomatal resistance. Ph. D. Thesis, Oreg. State. Univ., Corvallis, 133 p. (1972)

    Google Scholar 

  • Reed, K. L., Waring, R. H.: Coupling of environment to plant response: a simulation model of transpiration. Ecology 55, 62–72 (1974)

    Google Scholar 

  • Running, S. W.: Leaf resistance responses in selected conifers interpreted with a model simulating transpiration. M. S. Thesis, Oreg. State Univ., Corvallis, 87 p. (1973)

    Google Scholar 

  • Ruppert, W. J., Graham, R. D.: Utilization of western hemlock and western firs for poles and piles. Oreg. State Univ., Forest Research Lab., Res. Paper 22. 27 p. (1974)

  • Santantonio, D.: Root biomass studies of old-growth Douglas-fir. M. S. Thesis, Oreg. State Univ., Corvallis, 60 p. (1974)

    Google Scholar 

  • Slatyer, R. O.: Plant-water relationships, 366 p. New York: Academic Press 1967

    Google Scholar 

  • Sollins, P., Waring, R. H., Cole, D. W.: A systematic framework for modeling and studying the physiology of a coniferous forest ecosystem. In: Integrated research in the Coniferous Forest Biome (Proc. AIBS Symp. Conif. For. Ecosyst.), R. H. Waring, R. L. Edmonds, eds., Conif. For. Biome Bull. No. 5 (in press, 1974)

  • Sucoff, E.: Water potential in red pine: soil moisture, evapotranspiration, crown position. Ecology 53, 681–686 (1972)

    Google Scholar 

  • Stewart, C. M.: Moisture content of living trees. Nature (Lond.) 214, 138–140 (1967)

    Google Scholar 

  • Thompson, F. B., Leyton, L.: Method for measuring the leaf surface area of complex shoots. Nature (Lond.) 227, 572–573 (1971)

    Google Scholar 

  • Turner, N. C., Parlange, J. Y.: Analysis of operation and calibration of a ventilated diffusion porometer. Plant Physiol. 46, 175–177 (1970)

    Google Scholar 

  • Wagenkneckt, E.: Beiträge zur Kenntnis der Wurzelausbildung verschiedener Bestockungen. Mitt. aus der Staatsforstverwaltung Bayerns. 31, 252–274 (1960)

    Google Scholar 

  • Waggoner, P. E., Turner, N. G.: Transpiration and its control by stomata in a pine forest. Bull. Conn. Ag. Exp. Sta. 726, 87 p. (1971)

    Google Scholar 

  • Waring, R. H.: Die Messung des Wasserpotentials mit der Scholander-Methode und ihre Bedeutung für die Forstwissenschaft. Forstwissenschaftliches Centralblatt 89, 195–200 (1970)

    Google Scholar 

  • Watts, W. R., Neilson, R. E.: Photosynthesis and stomatal conductance in a Sitka spruce canopy. J. app. Ecol. (in press, 1975)

  • Woods, F. W.: Tritiated water as a tool for ecological field studies. Science 147, 148–149 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Running, S.W., Waring, R.H. & Rydell, R.A. Physiological control of water flux in conifers. Oecologia 18, 1–16 (1975). https://doi.org/10.1007/BF00350630

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350630

Keywords

Navigation