Skip to main content
Log in

Immunocytochemical localization of a vacuolar-type ATPase in Malpighian tubules of the ant Formica polyctena

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The presence of a vacuolar-type ATPase in Malpighian tubules of the ant Formica polyctena was investigated immunocytochemically, using antibodies to vacuolar ATPases of Manduca sexta midgut and bovine kidney. Specific labelling was observed at the brush border of the epithelium extending along the entire length of the tubules. These findings agree with the current view that a vacuolar ATPase is situated at the apical membrane of Malpighian tubule cells and other insect epithelial cells, being the energizing element of an electrogenic potassium pump. When antibodies were tested on tubules in different secretion conditions prior to fixation, no differences were observed in the distribution of the vacuolar ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bastani B, Purcell H, Hemken P, Trigg D, Gluck S (1991) Expression and distribution of renal vacuolar proton-translocating adenosine triphosphatase in response to chronic acid and alkali loads in the rat. J Clin Invest 88:126–136

    Google Scholar 

  • Bertram G (1989) Fluid secretion of Malpighian tubules of Drosophila hydei affected by amiloride — is there a K+/H+-antiporter? Verh Dtsch Zool Ges 82:203–204

    Google Scholar 

  • Bertram G, Schleithoff L, Zimmermann P,Wessing A (1991) Bafilomycin A1 is a potent inhibitor of urine formation by Malpighian tubules of Drosophila hydei: is a vacuolar-type ATPase involved in ion and fluid secretion? J Insect Physiol 37:201–210

    Google Scholar 

  • Bradley TJ, Satir P (1981) 5-Hydroxytryptamine-stimulated mitochondrial movement and microvillar growth inthe Malpighian tubules of the insect Rhodnius prolixus. J Cell Sci 49:139–161

    Google Scholar 

  • Brown D, Hirsch S, Gluck S (1988a) A H+-ATPase in opposite plasma membrane domains in kidney epithelial cell subpopulations. Nature 331:622–624

    Google Scholar 

  • Brown D, Hirsch S, Gluck S (1988b) Localization of a proton pumping ATPase in rat kidney. J Clin Invest 82:2114–2126

    Google Scholar 

  • Brown D, Sabolic I, Gluck S (1992) Polarized targeting of V-ATPase in kidney epithelial cells. J Exp Biol 172:231–243

    Google Scholar 

  • De Decker N (1993) Regulation of fluid secretion in Malpighian tubules of Formica polyctena by exo-and endogenous factors. Doctoral thesis. Limburgs Universitair Centrum, Diepenbeek, Belgium

  • Dijkstra S, Lohrmann E, Van Kerkhove E, Greger R (1994) Characteristics of the luminal proton pump in Malpighian tubules of the ant. Renal Physiol Biochem 17:27–39

    Google Scholar 

  • Forgac M (1989) Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev 69:765–796

    Google Scholar 

  • Garayoa M, Villaro AC, Montuenga L, Sesma P (1992) Malpighian tubules of Formica polyctena (Hymenoptera): light and electron microscopic study. J Morphol 214:159–171

    Google Scholar 

  • Gill SS, Ross LS (1991) Molecular cloning and characterization of the B subunit of a vacuolar H+-ATPase from the midgut and Malpighian tubules of Helicoverpa virescens. Arch Biochem Biophys 291:92–99

    Google Scholar 

  • Gluck S (1992) V-ATPase of the plasma membranes. J Exp Biol 172:29–37

    Google Scholar 

  • Gluck SL, Nelson RD, Lee BS, Wang Z-Q, Guo X-L, Fu J-Y, Zhang K (1992) Biochemistry of the renal V-ATPase. J Exp Biol 172:219–229

    Google Scholar 

  • Gogarten JP, Starke T (1992) Evolution and isoforms of V-ATPase subunits. J Exp Biol 172:137–147

    Google Scholar 

  • Gräf R, Novak FJS, Harvey WR, Wieczorek H (1992) Cloning and sequencing of a cDNA encoding the putative insect plasma membrane V-ATPase subunit A. FEBS Lett 300:119–122

    Google Scholar 

  • Gräf R, Harvey WR, Wieczorek H (1994) Cloning sequencing and expression of cDNA encoding an insect V-ATPase subunit E. Biochim Biophys Acta 1190:193–196

    Google Scholar 

  • Harvey WR (1992) Physiology of V-ATPases.J Exp Biol 172:1–17

    Google Scholar 

  • Harvey WR, Cioffi M, Wolfersberger MG (1983a) Chemiosmotic potassium ion pump of insect epithelia. Am J Physiol 244:R163-R175

    Google Scholar 

  • Harvey WR, Cioffi M, Wolfersberger MG (1983b) Potassium ion transport ATPase in insect epithelia. J Exp Biol 106:91–117

    Google Scholar 

  • Hemken P, Guo X-L, Wang Z-Q, Zhang K, Gluck S (1992) Immunologic evidence that vacuolar H+-ATPases with heterogeneous forms of Mr 31,000 subunit have different membrane distributions in mammalian kidney. J Biol Chem 267:9948–9957

    Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabelled antibody (PAP) procedure. J Histochem Cytochem 29:557–580

    Google Scholar 

  • Klein U (1992) The insect V-ATPase, a plasma membrane proton pump energizing secondary active transport: immunological evidence for the occurrence of a V-ATPase in insect ion-transporting epithelia. J Exp Biol 172:345–354

    Google Scholar 

  • Klein U, Zimmermann B (1991) The vacuolar-type ATPase from insect plasma membrane: immunocytochemical localization in insect sensilla. Cell Tissue Res 266:265–273

    Google Scholar 

  • Klein U, Löffelmann G, Wieczorek H (1991) The midgut as a model system for insect K+-transporting epithelia: immunocytochemical localization of a vacuolar-type H+ pump. J Exp Biol 161:61–75

    Google Scholar 

  • Lepier A, Azuma M, Harvey WR, Wieczorek H (1994) K+/H+ antiport in the tobacco hornworm midgut: the K+-transporting component of the K+ pump. J Exp Biol 196:361–373

    Google Scholar 

  • Leyssens A, Zhang SL, Van Kerkhove E, Steels P (1993) Both dinitrophenol and Ba2+ reduce KCl and fluid secretion in Malpighian tubules of Formica polyctena: the role of the apical H+ and K+ concentration gradient. J Insect Physiol 39:1061–1073

    Google Scholar 

  • Maddrell SHP (1977) Insect Malpighian tubules. In: Gupta BL, Moreton RB, Oschman JL, Wall BJ (eds) Transport of ions and water in animals. Academic Press, London, pp 541–569

    Google Scholar 

  • Maddrell SHP, O'Donnell MJ (1992) Insect Malpighian tubules: V-ATPase action in ion and fluid transport. J Exp Biol 172:417–429

    Google Scholar 

  • Madsen KM, Tisher CC, (1984) Response of interacalated cells of rat outer medullary collecting duct to chronic metabolic acidosis. Lab Invest 51:268–272

    Google Scholar 

  • Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55:663–700

    Google Scholar 

  • Montuenga L, Villaro AC, Sesma MP, Diaz De Rada O (1985) Estudio histológico de los túbulos de Malpigio de Schistocerca gregaria (Forskal). II: Microscopía electrónica. Acta Microsc 8:195–212

    Google Scholar 

  • Nelson N (1992) The vacuolar H+-ATPase — one of the most fundamental ion pumps in nature. J Exp Biol 172:19–27

    Google Scholar 

  • Nelson N, Taiz L (1989) The evolution of H+-ATPases. Trends Biochem Sci 14:113–116

    Google Scholar 

  • Nicolson SW (1993) The ionic basis of fluid secretion in insect Malpighian tubules: advances in the last ten years. J Insect Physiol 39:451–458

    Google Scholar 

  • Novak FJS, Gräf R, Waring RB, Wolfersberger MG, Wieczorek H, Harvey WR (1992) Primary structure of V-ATPase subunit B from Manduca sexta midgut. Biochim Biophys Acta 1132:67–71

    Google Scholar 

  • Pannabecker TL, Beyenbach KW (1993) Time-dependent mechanisms of action of bafilomycin in Malpighian tubules. FASEB J 7:A580

    Google Scholar 

  • Pedersen L, Carafoli E (1987) Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends Biochem Sci 12:146–150

    Google Scholar 

  • Phillips J (1981) Comparative physiology of insect renal function. Am J Physiol 241:R241-R257

    Google Scholar 

  • Russell VEW, Klein U, Reuveni M, Spaeth DD, Wolfersberger MG. Harvey W (1992) Antibodies to mammalian and plant V-ATPases cross react with the V-ATPase of insect cation-transporting plasma membranes. J Exp Biol 166:131–143

    Google Scholar 

  • Schwartz GJ, Al-Awqati Q (1985) Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules. J Clin Invest 75:1638–1644

    Google Scholar 

  • Schweikl H, Klein U, Schindlbeck M, Wieczorek H (1989) A vacuolar-type ATPase, partially purified from potassium transporting plasma membranes of tobacco hornworm midgut. J Biol Chem 264:11136–11142

    Google Scholar 

  • Van Kerkhove E (1994) Cellular mechanisms of salt secretion by the Malpighian tubules of insects. Belg J Zool 124:73–90

    Google Scholar 

  • Van Kerkhove E, Weltens R, Roinel N, De Decker N (1989) Haemolymph composition in Formica (Hymenoptera) and urine formation by the short isolated Malpighian tubules: electrochemical gradients for ion transport. J Insect Physiol 35:991–1003

    Google Scholar 

  • Verlander J, Madsen KM, Tisher CC (1987) Effect of acute respiratory acidosis on two populations of intercalated cells in rat cortical collecting duct. Am J Physiol 253:F1142-F1156

    Google Scholar 

  • Wall BJ, Oschman JL, Schmidt BA (1975) Morphology and function of Malpighian tubules and associated structures of tubules in the cockroach: Periplaneta americana. J Morphol 146:265–306

    Google Scholar 

  • Weltens R, Leyssens A, Zhang SL, Lohrmann E, Steels P, Van Kerkhove E (1992) Unmasking of the apical electrogenic H+ pump in isolated Malpighian tubules (Formica polyctena) by the use of barium. Cell Physiol Biochem 2:101–116

    Google Scholar 

  • Wieczorek H (1992) The insect V-ATPase, a plasma membrane proton pump energizing secondary active transport: molecular analysis of electrogenic potassium transport in the tobacco hornworm midgut. J Exp Biol 172:335–343

    Google Scholar 

  • Wieczorek H, Weerth S, Schindlbeck M, Klein U (1989) A vacuolar-type proton pump in a vesicle fraction enriched with potassium transporting plasma membranes from tobacco hornworm midgut. J Biol Chem 264:11143–11148

    Google Scholar 

  • Wieczorek H, Putzenlechner M, Zeiske W, Klein U (1991) A vacuolar-type proton pump energizes K+/H+ antiport in an animal plasma membrane. J Biol Chem 266:15340–15347

    Google Scholar 

  • Zhang K, Wang Z-Q, Gluck S (1992a) A cytosolic inhibitor of vacuolar H+-ATPases from mammalian kidney.J Biol Chem 267:9701–9705

    Google Scholar 

  • Zhang K, Wang Z-Q, Gluck S (1992b) Identification and partial purification of a cytosolic activator of vacuolar H+-ATPases from mammalian kidney. J Biol Chem 267:14539–14542

    Google Scholar 

  • Zhang S-L, Leyssens A, Van Kerkhove E, Weltens R, Van Driessche W, Steels P (1994) Electrophysiological evidence for the presence of an apical H+-ATPase in Malpighian tubules of Formica polyctena; intracellular and luminal pH measurements. Pflügers Arch 426:288–295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grants from the European Community (SCI-CT90-0480), from the Ministerio de Educación y Ciencia DGICYT, Spain (CE 91-0002), and from the Deutsche Forschungsgemeinschaft (Wi 698-3).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garayoa, M., Villaro, A.C., Klein, U. et al. Immunocytochemical localization of a vacuolar-type ATPase in Malpighian tubules of the ant Formica polyctena . Cell Tissue Res 282, 343–350 (1995). https://doi.org/10.1007/BF00319124

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00319124

Key words

Navigation