Skip to main content
Log in

Atrial and brain natriuretic peptides share binding sites on cultured cells from the rat trachea

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

We examined the distribution of binding sites for alpha-atrial natriuretic peptide (125I-ANP1–28) and the recently discovered porcine brain natriuretic peptide (125I-pBNP) on immunocytochemically identified cells in dissociated culture preparations of the rat trachea. Specific binding sites for both 125I-ANP1–28 and 125I-pBNP were evenly distributed over distinet subpopulations of smooth muscle myosin-like immunoreactive muscle cells, fibronectin-like immunoreactive fibroblasts and S-100-like immunoreactive glial cells. Neither keratin-like immunoreactive epithelial cells nor protein gene product 9.5-like immunoreactive paratracheal neurones expressed natriuretic peptide binding sites, although autoradiographically labelled glial cells were seen in close association with both neuronal cell bodies and neurites. The binding of each radiolabelled peptide was abolished by the inclusion of either excess (1 μM) unlabelled rat ANP or excess unlabelled porcine BNP, suggesting that ANP and BNP share binding sites in the trachea. Furthermore, the ring-deleted analogue, Des-[Gln18, Ser19, Gly20, Leu21, Gly22]-ANF4–23-NH2, strongly competed for specific 125I-ANP1–28 and 125I-pBNP binding sites in the tracheal cultures; this suggests that virtually all binding sites were of the “clearance” (ANP-C or ANF-R2) receptor subtype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1989) Molecular biology of the cell, 2nd edn. Garland, New York London, pp 613–680

    Google Scholar 

  • Baluk P, Fujiwara T, Matsuda S (1985) The fine structure of the ganglia of the guinea-pig trachea. Cell Tissue Res 239:51–60

    Google Scholar 

  • Beaumont K, Tan PK (1990) Effects of atrial and brain natriuretic peptides upon cyclic GMP levels, potassium transport, and receptor binding in rat astrocytes. J Neurosci Res 25:256–262

    Google Scholar 

  • Bianchi C, Gutkowska J, Thibault G, Garcia R, Genest J, Cantin M (1985) Radioautographic localization of 125I-atrial natriuretic factor (ANF) in rat tissues. Histochemistry 82:441–452

    Google Scholar 

  • Brown J, Czwarnecki A (1990) Autoradiographic localization of atrial and brain natriuretic receptors in the brain. Am J Physiol 258:R57-R63

    Google Scholar 

  • Cameron AR, Bullock CG, Kirkpatrick CT (1982) The ultrastructure of bovine tracheal muscle. J Ultrastruct Res 81:290–305

    Google Scholar 

  • Chamley JH, Campbell GR, McConnell JD, Gröschel-Stewart U (1977) Comparison of vascular smooth muscle cells from adult human, monkey and rabbit in primary culture and in subculture. Cell Tissue Res 177:503–522

    Google Scholar 

  • Chamley-Campbell J, Campbell GR, Ross R (1979) The smooth muscle cell in culture. Physiol Rev 59:1–61

    Google Scholar 

  • Chang M, Lowe DG, Lewis M, Hellmiss R, Chen E, Goeddel DV (1989) Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases, Nature 341:68–71

    Google Scholar 

  • Chinkers M, Garbers DL, Chang M-S, Lowe DG, Chin H, Goeddel DV, Schulz S (1989) A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338:78–83

    Google Scholar 

  • De Bold AJ, Flynn TG (1983) A novel heart peptide with potent diuretic and natriuretic properties. Life Sci 33:292–302

    Google Scholar 

  • Féthière J, Meloche S, Nguyen TT, Ong H, De Lean A (1989) Distinct properties of atrial natriuretic factor receptor subpopulations in epithelial and fibroblast cell lines. Mol Pharmacol 35:584–592

    Google Scholar 

  • Fiscus RR, Robles BT, Waldman SA, Murad F (1987) Atrial natriuretic factors stimulate accumulation and efflux of cyclic GMP in C6-2B rat glioma and PC12 rat pheochromocytoma cell cultures. J Neurochem 48:522–528

    Google Scholar 

  • Friedl A, Harmening C, Hamprecht B (1986) Atrial natriuretic hormones raise the level of cyclic GMP in neural cell lines. J Neurochem 46:1522–1527

    Google Scholar 

  • Fuller FF, Porter JG, Arfsten AE, Miller J, Schilling JW, Scarborough RM, Lewicki JA, Schenk DB (1988) Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cDNA clones. J Biol Chem 263:9395–9401

    Google Scholar 

  • Gardner DG, Deschepper CF, Ganong WF, Hane S, Fiddes J, Baxter JD, Lewicki J (1986) Extra-atrial expression of gene for atrial natriuretic factor. Proc Natl Acad Sci USA 83:6697–6701

    Google Scholar 

  • Gröschel-Stewart U, Rakousky C, Franke R, Peleg I, Kahane I, Eldor A, Muhlrad A (1985) Immunohistochemical studies with antibodies to myosins from the cytoplasm and membrane fraction of human blood platelets. Cell Tissue Res 241:399–404

    Google Scholar 

  • Gulbenkian S, Wharton J, Polak JM (1987) The visualisation of cardiovascular innervation in the guinea pig using an antiserum to protein gene product 9.5 (PGP 9.5). J Auton Nerv Syst 18:235–247

    Google Scholar 

  • Gutkowska J, Cantin MM, Genest J, Sirois P (1987) Release of immunoreactive atrial natriuretic factor from the isolated perfused rat lung. FEBS Lett 214: 17–20

    Google Scholar 

  • Hamel R, Ford-Hutchinson AW (1986) Relaxant profile of synthetic atrial natriuretic factor on guinea-pig pulmonary tissues. Eur J Pharmacol 121:151–155

    Google Scholar 

  • Hirata Y, Shichiri M, Emori T, Marumo F, Kangawa K, Matsuo H (1988) Brain natriuretic peptide interacts with atrial natriuretic peptide receptor in cultured rat vascular smooth muscle cells. FEBS Lett 238:415–418

    Google Scholar 

  • Hoyes AD, Barber P (1980) Innervation of the trachealis muscle in the guinea pig: a quantitative ultrastructural study. J Anat 130:789–900

    Google Scholar 

  • Ishii K, Murad F (1989) ANP relaxes bovine tracheal smooth muscle and increases cGMP. Am J Physiol 256:C495-C500

    Google Scholar 

  • James S, Bailey DJ, Burnstock G (1990a) Autoradiographic visualization of muscarinic receptors on rat paratracheal neurones in dissociated cell culture. Brain Res 513:74–80

    Google Scholar 

  • James S, Hassall CJS, Polak JM, Burnstock G (1990b) Visualisation of specific binding sites for atrial natriuretic peptide on non-neuronal cells of cultured rat sympathetic ganglia. Cell Tissue Res 259:129–137

    Google Scholar 

  • James S, Hassall CJS, Polak JM, Burnstock G (1990c) Autoradiographic localization of specific atrial natriuretic peptide binding sites on immunocytochemically identified cells in cultures from rat and guinea-pig hearts. Cell Tissue Res 261:301–312

    Google Scholar 

  • Kuno T, Andresen JW, Kamisaki Y, Waldman SA, Chang LY, Saheki S, Leitman DC, Nakane M, Murad F (1986) Co-purification of an atrial natriuretic factor receptor and particulate guanylate cyclase from rat lung. J Biol Chem 261:5817–5823

    Google Scholar 

  • Leitman DC, Murad F (1987) Atrial natriuretic factor receptor heterogeneity and stimulation of particulate guanylate cyclase and cyclic GMP accumulation. Endocrinol Metab Clin North Am 16:79–105

    Google Scholar 

  • Leitman DC, Agnost VL, Tuan JJ, Andresen JW, Murad F (1987) Atrial natriuretic factor and sodium nitroprusside increase cyclic GMP in cultured rat lung fibroblasts by activating different forms of guanylate cyclase. Biochem J 244:69–74

    Google Scholar 

  • Lofton CE, Baron DA, Oehlenschlager WF, Currie MG (1988) Pulmonary atrial natriuretic peptide. In: Needleman P (ed) Biological and molecular aspects of atrial factors. Liss, New York, pp 29–36

    Google Scholar 

  • Lowe DG, Chang M-S, Hellmiss R, Chen E, Singh S, Garbers DL, Goeddel DV (1989) Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J 8:1377–1384

    Google Scholar 

  • Maack T, Suzuki M, Almeida FA, Nussenzveig D, Scarborough RM, McEnroe GA, Lewicki JA (1987) Physiological role for silent receptors of atrial natriuretic factor. Science 238:675–678

    Google Scholar 

  • Mirchevich A, Kim DD, Wurster RD, Zhou HL, Ali S, Wehrmacher WH, Fiscus RR (1989) Brain natriuretic peptide (BNP) and auriculin B (ANP4–28) cause accumulation and efflux of cyclic GMP in rat glioma (C6-2B) cell cultures. FASEB J 3:A728

  • O'Donnell M, Garippa R, Welton AF (1985) Relaxant activity of atriopeptins in isolated guinea pig airway and vascular smooth muscle. Peptides 6:597–601

    Google Scholar 

  • Oehlenschlager WF, Baron DA, Schomer H, Currie MG (1989) Atrial and brain natriuretic peptides share binding sites in the kidney and heart. Eur J Pharmacol 161:159–164

    Google Scholar 

  • Pandey KN, Pavlou SN, Inagami T (1988) Identification and characterization of three distinct atrial natriuretic factor receptors. J Biol Chem 263:13406–13413

    Google Scholar 

  • Potvin W, Varma DR (1989) Bronchodilator activity of atrial natriuretic peptide in guinea pigs. Can J Physiol Pharmacol 67:1213–1218

    Google Scholar 

  • Raff MC, Fields KL, Hakomori S, Mirsky R, Pruss RM, Winter J (1979) Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res 174:283–308

    Google Scholar 

  • Richardson JB, Ferguson CC (1980) Neuromuscular structure and function in the airways. Fed Proc 38:202–208

    Google Scholar 

  • Sakamoto M, Nakao K, Morii N, Sugawara A, Yamada T, Itoh H, Shiono S, Saito Y, Imura H (1986) The lung as a possible target organ for atrial natriuretic polypeptide secreted from the heart. Biochem Biophys Res Commun 135:515–520

    Google Scholar 

  • Schroeder HP von, Nishimura E, McIntosh CHS, Buchan AMJ, Wilson N, Ledsome JR (1985) Autoradiographic localization of binding sites for atrial natriuretic factor. Can J Physiol Pharmacol 63:1373–1377

    Google Scholar 

  • Shimonaka M, Saheki T, Hagiwara H, Ishido M, Nogi A, Fujita T, Wakita K, Inada Y, Kondo J, Hirose S (1987) Purification of atrial natriuretic peptide receptor from bovine lung. J Biol Chem 262:5510–5514

    Google Scholar 

  • Siggins GR (1982) Regulation of cellular excitability by cyclic nucleotides. In: Nathanson JA, Kebabian JW (eds) Handbook of experimental pharmacology, vol 58/II: cyclic nucleotide. II. Physiology and pharmacology. Springer, Berlin Heidelberg New York, pp 305–346

    Google Scholar 

  • Simonnet G, Allard M, Legendre P, Gabrion J, Vincent JD (1989) Characteristics and specific localization of receptors for atrial natriuretic peptides at non-neuronal cells in cultured mouse spinal cord cells. Neuroscience 29:189–199

    Google Scholar 

  • Song D-L, Klaus KP, Murad F (1988) Brain natriuretic peptide. Augmentation of cellular cyclic GMP, activation of particulate guanylate cyclase and receptor binding. FEBS Lett 232:125–129

    Google Scholar 

  • Sudoh T, Kangawa K, Minamino N, Matsuo H (1988) A new natriuretic peptide in porcine brain. Nature 332:78–81

    Google Scholar 

  • Thyberg J, Nilsson J, Palmberg L, Sjölund M (1985) Adult human arterial smooth muscle cells in primary culture. Modulation from contractile to synthetic phenotype. Cell Tissue Res 239:69–74

    Google Scholar 

  • Torda T, Nazarali AJ, Saavedra JM (1989) Brain natriuretic peptide receptors in the rat peripheral sympathetic ganglia. Biochem Biophys Res Commun 159:1032–1038

    Google Scholar 

  • Uchida K, Mizuno T, Shimonaka M, Sugiura N, Hagiwara H, Hirose S (1989) Subtype switching of ANP receptors during in vitro culture of vascular cells. Am J Physiol 256:H311-H314

    Google Scholar 

  • Waldman SA, Rapoport RM, Murad F (1984) Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J Biol Chem 259:14332–14334

    Google Scholar 

  • Watanabe H, Furui H, Yamaki K, Suzuki R, Takagi T, Satake T (1988) Atrial natriuretic polypeptide causes a dose-dependent relaxant effect on guinea pig tracheal smooth muscle. Am Rev Respir Dis 137:102

    Google Scholar 

  • Wharton J, Gulbenkian S, Merighi A, Kuhn DM, Jahn R, Taylor KM, Polak JM (1988) Immunohistochemical and ultrastructural localization of peptide-containing nerves and myocardial cells in the human atrial appendage. Cell Tissue Res 254:155–166

    Google Scholar 

  • Yamada SS, Yamada K, Willingham MC (1980) Intracellular localization of fibronectin by immunoelectron microscopy. J Histochem Cytochem 28:953–960

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, S., Burnstock, G. Atrial and brain natriuretic peptides share binding sites on cultured cells from the rat trachea. Cell Tissue Res 265, 555–565 (1991). https://doi.org/10.1007/BF00340880

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00340880

Key words

Navigation