Skip to main content
Log in

Nitrergic innervation and nitrergic cells in arteriovenous anastomoses

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Nitrergic innervation and nitrergic epithelioid cells were studied in arteriovenous anastomoses of the tongue, ear, eye, and glomus organ of the finger in different species (rat, rabbit, dog, and man), by means of immunohistochemistry for nitric oxide synthase and enzyme histochemistry utilizing the catalytic activity of this enzyme (the NADPH-diaphorase reaction). Nitrergic perivascular fibers of the tongue were concentrated along the arterial tree and were maximal at the arteriovenous anastomoses in all species. Generally, fewer fibers were located around comparable segments of the episcleral eye vasculature. Only a few nitrergic fibers were found in the canine and rabbit ear, and in the glomus organ of the human finger; however, epithelioid cells in the tunica media of arteriovenous anastomoses of these organs were NADPH-diaphorase-positive and were moderately immunoreactive for nitric oxide synthase. In the epithelioid cells, the reaction product of the NADPH-diaphorase could also be demonstrated by transmission electron microscopy. The epithelioid cells were negative for the panneural and neuroendocrine marker PGP 9.5 confirming the myocytotic nature of these nitrergic cells. Thus, nitric oxide might play a role in mediating the vessel tone of arteriovenous anastomoses via nitrergic nerves or epithelioid cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akester AR (1967) Renal portal shunts in the kidney of the domestic fowl. J Anat 101:569–594

    Google Scholar 

  • Akester AR (1971) Nervous control of blood flow patterns in the avian kidney. J Anat 108:606–607

    Google Scholar 

  • Böck P (1980) Feinstruktur und Innervation arteriovenöser Anastomosen (AVAs). Wien Klin Wochenschr 92:179–187

    Google Scholar 

  • Clara M (1956) Die arterio-venösen Anastomosen. Anatomie. Biologie. Pathologie. Springer, Wien

    Google Scholar 

  • Curri SB (1979) Fine structure and innervation of arteriovenous anastomoses. Bibl Anat 18:28–30

    Google Scholar 

  • Förstermann U, Schmidt HHHW, Pollock JS, Sheng H, Mitchell JA, Warner TD, Nakane M, Murad F (1991) Isoforms of nitric oxide synthase — characterization and purification from different cell types. Biochem Pharmacol 10:1849–1857

    Google Scholar 

  • Furchgott RF, Zawadzki JW (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Google Scholar 

  • Funk RHW, Rohen JW (1994) In vivo observations of the episcleral vasculature in the albino rabbit. J Glaucoma (in press)

  • Gorgas K, Böck P, Tischendorf F, Curri SB (1977) The fine structure of human digital arterio-venous anastomoses (Hoyer-Grosser's organs). Anat Embryol 150:269–289

    Google Scholar 

  • Hale AR, Burch GE (1960) The arteriovenous anastomoses and blood vessels of the human finger. Medicine 39:191–240

    Google Scholar 

  • Hammersen F (1971) The fine structure of epithelioid vascular cells. A comparative electron microscopic study. In: Ditzel J, Lewis DH (eds) Sixth European Conference on the microcirculation. Karger, Basel, pp 45–56

    Google Scholar 

  • Hammersen F (1976) On the fine structure of the arteriovenous anastomoses of the rabbit ear. In: Grayson J, Zingg W (eds) Microcirculation. Plenum Press, New York, pp 155–157

    Google Scholar 

  • Iijima T, Kondo T, Hasegawa K (1987) Autonomic innervation of the arteriovenous anastomoses in the dog tongue. A histochemical and ultrastructural study. Cell Tissue Res 247:167–177

    Google Scholar 

  • Iijima T, Hasegawa K, Hirose H (1988) Wall structure of arteriovenous anastomoses in the rabbit ear. Combined light-, scanning-and transmission-electron-microscopic studies. Cell Tissue Res 252:1–8

    Google Scholar 

  • Iijima T, Kondo T, Nishijima K, Tanaka T (1989) Innervations of the arteriovenous anastomoses in the dog tongue. Cell Tissue Res 258:425–428

    Google Scholar 

  • Krönert H, Wurster RD, Pierau F-K, Pleschka K (1980) Vasodilatory response of arteriovenous anastomoses to local cold stimuli in the dog's tongue. Pflügers Arch 388:17–19

    Google Scholar 

  • Kummer W, Mayer B (1993) Nitric oxide synthase-immunoreactive axons innervating the guinea pig lingual artery: an ultrastructural immunohistochemical study using elastic brightfield imaging. Histochemistry 99:175–179

    Google Scholar 

  • Kummer W, Fischer A, Mundel P, Mayer B, Hoba B, Philippin B, Preissler U (1992) Nitric oxide synthase in VIP-containing vasodilator nerve fibres in the guinea-pig. NeuroReport 3:653–655

    Google Scholar 

  • Luckner H, Staubesand J (1951) Die inkretorische Funktion des Glomus coccygeum. Z Ges Exp Med 117:96–102

    Google Scholar 

  • Mayer B, John M, Heinzel B, Werner ER, Wachter H, Schultz G, Böhme E (1991) Brain nitric oxide synthase is a biopterin-and flavin-containing multi-functional oxido-reductase. FEBS Lett 288:187–191

    Google Scholar 

  • McConalogue K, Furness JB (1993) Projections of nitric oxide synthesizing neurons in the guinea-pig colon. Cell Tissue Res 271:545–553

    Google Scholar 

  • Midtgard U (1988) Innervation of arteriovenous anastomoses in the brood patch of the domestic fowl. Cell Tissue Res 252:207–210

    Google Scholar 

  • Midtgard U, Sejrsen P, Johansen K (1985) Blood flow in the brood patch of bantam hens: evidence of cold vasodilatation. J Comp Physiol [B] 155:703–709

    Google Scholar 

  • Molyneux GS (1977) The role of arteriovenous anastomoses in the peripheral circulation. Proc R Soc Lond [Biol] 88:1–9

    Google Scholar 

  • Molyneux GS (1981) Neural control of cutaneous arteriovenous anastomoses. In: Garlick D (ed) Progress in microcirculation research, University of New South Wales. Committee Postgraduate Medical Education. University Press, Sydney, pp 296–315

    Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 4:109–142

    Google Scholar 

  • Murrish DE, Guard CL (1977) Cardiovascular adaptations of the giant petrel, Macronectes giganteus, to the antarctic environment. In: Llano GA (ed) Adaptations within antarctic ecosystems. Smithsonian Institute, Washington DC, pp 511–530

    Google Scholar 

  • Nebert H (1964) Histochemische Untersuchungen an den epitheloidzelligen Gefäßstrecken der Glomerula caudalia. I. Mitt. Cholinesterasen. Z Zellforsch 62:363–370

    Google Scholar 

  • Rohen JW, Funk RHW (1992) Functional morphology of the episcleral vessels. Exp Eye Res 55 [Suppl 1]:42

    Google Scholar 

  • Rohen JW, Funk RHW (1994) Functional morphology of the episcleral vasculature in rabbits and dogs. J Glaucoma (in press)

  • Romanul FCA, Bannister R (1962) Localized areas of high alkaline phosphatase activity in the terminal arterial tree. J Cell Biol 15:73–81

    Google Scholar 

  • Romeo HE, Weihe E, Müller S, Vollrath L (1993) Protein gene product 9.5 immunoreactivity in nerve fibres and pinealocytes of guinea-pig pineal gland: interrelationship with tyrosine hydroxylase-and neuropeptide-Y-immunoreactive nerve fibres. Cell Tissue Res 271:477–484

    Google Scholar 

  • Scherer-Singler U, Vincent SR, Kimura H, McGeer EG (1983) Demonstration of a unique population of neurons with NADPH-diaphorase histochemistry. J Neorosci Methods 9:229–234

    Google Scholar 

  • Staubesand J (1953a) Der Feinbau des Glomus coccygicum und der Glomerula caudalia. Ein Beitrag zur Histophysiologie vasaler Glomusorgane. Acta Anat 19:105–131

    Google Scholar 

  • Staubesand J (1953b) Der Feinbau des Glomus coccygicum und der Glomerula caudalia. Ein Beitrag zur Histophysiologie vasaler Glomusorgane. Acta Anat 19:309–344

    Google Scholar 

  • Staubesand J (1968) Zur Orthologie der arterio-venösen Anastomosen. In: Die arterio-venösen Anastomosen (Aktuelle Probleme in der Angiologie, Band 2). Huber, Bern Stuttgart, pp 11–23

    Google Scholar 

  • Stelzner F, Staubesand J, Machleidt H (1962) Das Corpus cavernosum recti-die Grundlage der inneren Hämorrhoiden. Langenbecks Arch Klin Chir 299:302–312

    Google Scholar 

  • Stone RA, Kuwayama Y (1989) The nervous system and intraocular pressure. In: Rich R, Shields MB, Krupin T (eds) The glaucomas. Mosby, St Louis, pp 257–281

    Google Scholar 

  • Stone RA, Kuwayama Y, Laties AM (1987) Regulatory peptides in the eye. Experientia 43:791–800

    Google Scholar 

  • Thompson RJ, Doran JF, Jackson P, Dhillon AP, Rhode J (1983) PGP 9.5 — a new marker for vertebrate neurons and neuroendocrine cells. Brain Res 278:224–228

    Google Scholar 

  • Thomson EM, Pleschka K (1980) Vasodilatory mechanisms in the tongue and nose of the dog under heat load. Pflügers Arch 387:161–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funk, R.H.W., Mayer, B. & Wörl, J. Nitrergic innervation and nitrergic cells in arteriovenous anastomoses. Cell Tissue Res 277, 477–484 (1994). https://doi.org/10.1007/BF00300220

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00300220

Key words

Navigation