Skip to main content
Log in

Analysis of the heterogeneity within bovine pineal gland by immunohistochemistry and in situ hybridization

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In the present study, we demonstrate a cortical and medullary arrangement of parenchymal cells in the bovine pineal gland by using antibodies for neuronspecific enolase, synaptophysin, and hydroxyindole O-methyltransferase (HIOMT) as markers of pinealocytes, and glial fibrillary acidic protein (GFAP) as a marker of interstitial (glial) cells. Furthermore, by means of probes specific for HIOMT mRNA, we have examined possible differences in melatonin synthesis between the cortex and the medulla. Immunoreactive pinealocytes for each antigen investigated are more densely distributed in the cortex than in the medulla. In the cortex, GFAP-positive interstitial cells have large intenselystained somata endowed with several long, thin cytoplasmic processes, whereas in the medulla, they display smaller, less intensely labeled perikarya from which numerous fine short processes emerge. Golgi staining has confirmed these morphological differences between the interstitial cells in the cortex and those in the medulla. An analysis using confocal laser microscopy together with in situ hybridization for HIOMT mRNA has shown that the expression of mRNA transcripts in the cortex is more intense than that in the medulla. The expression of the HIOMT gene in a cluster of cells in the medial habenular nucleus is lower than that in pinealocytes of the pineal organ proper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arstila VA (1967) Electron microscopic studies on the structure and histochemistry of the pineal gland of the rat. Neuroendocrinology [Suppl] 2:1–101

    Google Scholar 

  • Benson R, Satterfield V (1975) Ultrastructural characteristics of mouse pinealocytes following optic enucleation or continous illumination. Anat Rec 181:312

    Google Scholar 

  • Bignami A, Dahl D (1974) Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to glial fibrillary acidic protein. J Comp Neurol 153:27–37

    Google Scholar 

  • Bishop AE, Carlei F, Lee V, Trojanowski J, Marangos PJ, Dahl D, Polak JM (1985) Combined immunostaining of neurofilaments, neuron specific enolase, GFAP and S-100. A possible means for assessing the morphological and functional status of the enteric nervous system. Histochemistry 82:93–97

    Google Scholar 

  • Blumfield M, Tapp E (1970) Measurements of pineal parenchymal cells and their nuclei in the albino rat at different ages. Acta Morphol Neerl-Scand 8:1–8

    Google Scholar 

  • Bubenik GA, Brown GM, Uhlir I, Grota LJ (1974) Immunohistological localization of N-acetylindolealkylamines in pineal gland, retina and cerebellum. Brain Res 81:233–242

    Google Scholar 

  • Calvo J, Boya J (1984) Ultrastructure of the pineal gland in the adult rat. J Anat 138:405–409

    Google Scholar 

  • Calvo J, Boya J, Borregon A, Garcia-Maurino JE (1988) Presence of glial cells in the rat pineal gland: a light and electron microscopic immunohistochemical study. Anat Res 220:424–428

    Google Scholar 

  • Cheesman DW (1970) Structure elucidation of a gonadotropin inhibiting substance from the bovine pineal gland. Biochem Biophys Acta 207:247–253

    Google Scholar 

  • Collins VP (1987) Pineocytoma with neuronal differentiation demonstrated immunocytochemically. Acta Pathol Microbiol Immunol Scand [A] 95:113–117

    Google Scholar 

  • Dafny N, McClung R, Strada SJ (1975) Neurophysiological properties of the pineal body. 1. Field potentials. Life Sci 16:611–620

    Google Scholar 

  • Dennis MJ, Ziskind-Conhaim L, Harris AJ (1981) Development of neuromuscular junctions in rat embryos. Dev Biol 81:266–279

    Google Scholar 

  • Eng LF, Vanderhaeghen JJ, Bignami A, Gerstl B (1971) An acidic protein isolated from fibrous astrocytes. Brain Res 28:351–354

    Google Scholar 

  • Freund D, Arendt J, Vollrath L (1977) Tentative immunohistochemical demonstration of melatonin in the rat pineal gland. Cell Tissue Res 181:239–244

    Google Scholar 

  • Fujieda H, Sato T, Wake K, Takaoka M, Morimoto S (1993) Tissue kallikrein in the rat pineal gland: an immunocytochemical study. J Pineal Res 14:84–88

    Google Scholar 

  • Gown AM, Gabbiani G (1984) Intermediate-sized (10-nm) filaments in human tumours. In: DeLellis RA (ed) Advances in immunohistochemistry. Masson, New York, pp 89–109

    Google Scholar 

  • Haimoto H, Takahashi Y, Koshikawa T, Nagura H, Kato K (1985) Immunohistochemical localization of r-enolase in normal human tissues other than nervous and neuroendocrine tissues. Lab Invest 52:257–263

    Google Scholar 

  • Haulica I, Branisteann DD, Rosca V, Stratone A, Berbeleu V, Balan G, Ionescu L (1975) A renin-like activity in pineal gland and hypophysis. Endocrinology 96:530–532

    Google Scholar 

  • Huang SK, Klein DC, Korf HW (1992) Immunocytochemical demonstration of rod-opsin, S-antigen, and neuron-specific proteins in the human pineal gland. Cell Tissue Res 267:493–498

    Google Scholar 

  • Ishida I, Obinata M, Deguchi T (1987a) Molecular cloning and nucleotide sequence of cDNA encoding hydroxyindole O-methyltransferase of bovine pineal glands. J Biol Chem 262:2895–2899

    Google Scholar 

  • Ishida I, Ohsako S, Nakane M, Deguchi T (1987b) Expression and characterization of hydroxyindole O-methyltransferase from a cloned cDNA in Chinese hamster ovary cells. Mol Brain Res 2:185–189

    Google Scholar 

  • Jahn R, Schiebler W, Ouimet C, Greengard P (1985) A 38000 dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci USA 82:4137–4141

    Google Scholar 

  • Karasek M (1983) Ultrastructure of the mammalian pineal gland: Its comparative and functional aspects. In: Reiter RJ (ed) Pineal Res Rev, vol 1. Liss, New York, pp 2–48

    Google Scholar 

  • Knaus P, Betz H, Rehm H (1986) Expression of synaptophysin during postnatal development of the mouse brain. J Neurochem 47:1302–1304

    Google Scholar 

  • König A, Meyer A (1967) Tagesperiodische Schwankungen einer antidiuretischen Aktivität aus der Epiphysis cerebri ausgewachsener männlicher Ratten. Naturwissenschaften 54:93

    Google Scholar 

  • König A, Meyer A (1971) The effect of continuous illumination on the circadian rhythm of the antidiuretic activity of the rat pineal. J Interdiscipl Cycle Res 2:255–262

    Google Scholar 

  • Korf HW, Møller M, Gery I, Zigler J, Klein D (1985) Immunocytochemical demonstration of retinal S-antigen in the pineal organ of four mammalian species. Cell Tissue Res 239:81–85

    Google Scholar 

  • Kuwano R, Iwanaga T, Nakajima T, Masuda T, Takahashi Y (1983) Immunocytochemical demonstration of hydroxyindole O-methyltransferase (HIOMT), neuron-specific enolase (NSE) and S-100 protein in the bovine pineal. Brain Res 274:171–175

    Google Scholar 

  • McClung R, Dafny N (1975) Neurophysiological properties of the pineal body. II. Single unit recording. Life Sci 16:621–628

    Google Scholar 

  • McClure CD, McMillan PJ, Miranda CA (1986) Demonstration of differential immunohistochemical localization of the neuronspecific enolase antigen in rat pinealocytes. Am J Anat 176:461–467

    Google Scholar 

  • Navone F, Jahn R, DiGioia G, Stukenbrok H, Greengard P, De Camilli P (1986) Protein p38: an integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J Cell Biol 103:2511–2527

    Google Scholar 

  • Pévet P (1977) On the presence of different populations of pinealocytes in the mammalian pineal gland. J Neural Transm 40:289–304

    Google Scholar 

  • Pévet P (1983) Anatomy of the pineal gland of mammals. In: Relkin R (ed) The pineal gland. Elsevier Biomedical, New York, pp 1–75

    Google Scholar 

  • Quay WB (1957) Cytochemistry of pineal lipids in rat and man. J Histochem Cytochem 5:145–153

    Google Scholar 

  • Quay WB (1958) Pineal blood content and its experimental modification. Am J Physiol 195:391–395

    Google Scholar 

  • Quay WB, Renzoni A (1966) Twenty-four hour rhythms in pineal mitotic activity and nuclear and nucleolar dimensions. Growth 30:315–324

    Google Scholar 

  • Redecker P, Grube D, Jahn R (1990) Immunohistochemical localization of synaptophysin (p38) in the pineal gland of the Mongolian gerbil (Meriones unguiculatus). Anat Embryol 181:433–440

    Google Scholar 

  • Rehm H, Wiedenmann B, Betz H (1986) Molecular characterization of synaptophysin, a major calcium-binding protein of the synaptic vesicle membrane. EMBO J 5:535–541

    Google Scholar 

  • Romeis B (1948) Mikroskopische Technik. 15. Auflage. Leibniz, München

    Google Scholar 

  • Rosenbloom AA, Fisher DA (1975) Radioimmunoassayable AVT and AVP in adult mammalian brain tissue: comparison of normal and Brattleboro rats. Neuroendocrinology 17:345–361

    Google Scholar 

  • Sato T, Deguchi T, Ichikawa T, Fujieda H, Wake K (1991) Localization of hydroxyindole O-methyltransferase-synthesizing cells in bovine epithalamus: immunocytochemistry and in-situ hybridization. Cell Tissue Res 263:413–418

    Google Scholar 

  • Semm P, Vollrath L (1979) Electrophysiology of the guinea-pig pineal organ: sympathetic influenced cells responding differently to light and darkness. Neurosci Lett 12:93–96

    Google Scholar 

  • Semm P, Vollrath L (1980) Electrophysiological evidence for circadian rhythmicity in a mammalian pineal organ. J Neural Transm 47:181–190

    Google Scholar 

  • Semm P, Vollrath L (1982) Alterations in the spontaneous activity of cells in the guinea pig pineal gland and visual system produced by pineal indoles. J Neural Transm 53:265–275

    Google Scholar 

  • Sternberger LA (1986) Immunocytochemistry, 3rd edn. Wiley, New York Chichester Brisbane

    Google Scholar 

  • Tapp E, Blumfield M (1970) The parenchymal cells of the rat pineal gland. Acta Morphol Neerl-Scand 8:119–131

    Google Scholar 

  • Trapp B, Marangos P, Webster H (1981) Immunocytochemical localization and developmental profile of neuron-specific enolase during differentiation. Brain Res 220:121–130

    Google Scholar 

  • Vollrath L (1981) The pineal organ. In: Oksche A, Vollrath L (eds) Handbuch der Mikroskopischen Anatomie des Menschen VI/7. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Vollrath L, Schröder H (1987) Neuronal properties of mammalian pinealocytes? In: Trentini GP, De Gaetani C, Pévet P (eds) Fundamentals and clinics in pineal research, vol 44. Raven Press, New York, pp 13–23

    Google Scholar 

  • Vollrath L, Schultz R, McMillan P (1983) “Synaptic” ribbons and spherules of the guinea pig pineal gland: inverse day/night differences in number. Am J Anat 168:67–74

    Google Scholar 

  • White WF, Hedlund MT, Weber GF, Rippel RH, Johnson ES, Wilber JF (1974) The pineal gland: a supplemental source of hypothalamic-releasing hormones. Endocrinology 94:1422–1426

    Google Scholar 

  • Wiedenmann B, Franke WW (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of M 38000 characteristic of presynaptic vesicles. Cell 41:1017–1028

    Google Scholar 

  • Wiedenmann B, Franke WW, Kuhn C, Moll R, Gould VE (1986) Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proc Natl Acad Sci USA 83:3500–3504

    Google Scholar 

  • Wolfe DE (1965) The epiphyseal cell: an electron-microscopic study of its intercellular relationships and intracellular morphology in the pineal body of the albino rat. In: Ariëns Kappers J, Schadé JP (eds) Structure and function of the epiphysis cerebri (Progress in Brain Research, vol 10). Elsevier, Amsterdam, pp 332–386

    Google Scholar 

  • Wurtman RJ, Axelrod J, Kelly DE (1968) The pineal. Academic Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, T., Kaneko, M., Fujieda, H. et al. Analysis of the heterogeneity within bovine pineal gland by immunohistochemistry and in situ hybridization. Cell Tissue Res 277, 201–209 (1994). https://doi.org/10.1007/BF00327768

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00327768

Key words

Navigation