Skip to main content
Log in

The ultrastructural arrangement of thrombosthenin in glycerol extracted thrombocytes

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The ultrastructure of glycerol extracted thrombocyte models was studied before and after incubation with ATP and under the influence of Salyrgan as inhibitor of contraction. The contractile system of the thrombocytes—thrombosthenin—consists of a spatial network of 50 Å wide thrombosthenin A and 100–120 Å wide thrombosthenin M filaments. At rest, the contractile system is arranged in a marginal zone. The ATP-induced contraction led to a concentric condensation of the network which resulted in a central cluster of cell organelles and at a later stage, disruption of the plasma membrane and release of the thrombocyte granules. All these changes which also occur during the formation of the hemostatic plug in vivo are therefore attributed to the reaction of the contractile protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behnke, O., Kristensen, B. J., Nielsen, L. E.: Electron microscopical observations on actinoid and myosinoid filaments in blood platelets. J. Ultrastruct. Res.37, 351–369 (1971).

    Google Scholar 

  • Behnke, O., Zelander, T.: Substructure in negatively stained microtubules of mammalian blood platelets. Exp. Cell Res.43, 236–238 (1966).

    Google Scholar 

  • Bettex-Galland, M., Lüscher, E. F.: Extraction of an actomyosin-like protein from human thrombocytes. Nature (Lond.)184, 276–279 (1959).

    Google Scholar 

  • Bettex-Galland, M., Lüscher, E. F.: Thrombosthenin—a contractile protein from thrombocytes. Its extraction from human blood platelets and some of its properties. Biochim. biophys. Acta (Amst.)49, 563–547 (1961).

    Google Scholar 

  • Bettex-Galland, M., Lüscher, E. F.: Thrombosthenin, the contractile protein from blood platelets and its relation to other contractile proteins. Advanc. Protein Chem.20, 1–35 (1965).

    Google Scholar 

  • Bettex-Galland, M., Lüscher, E. F., Weibel, E. R.: Thrombosthenin—Electron microscopical studies on its localization in human blood platelets and some properties of its subunits. Thrombos. Diathes. haemorrh. (Stuttg.)22, 431–449 (1969).

    Google Scholar 

  • Bettex-Galland, M., Portzehl, H., Lüscher, E. F.: Dissociation of thrombosthenin into two components comparable with actin and myosin. Nature (Lond.)193, 777–778 (1962).

    Google Scholar 

  • Booyse, F. M., Sternberger, L. A., Zschocke, D., Rafelson, M. E.: Ultrastructural localization of contractile protein (Thrombosthenin) in human platelets using an unlabeled antibody-peroxidase staining technique. J. Histochem. Cytochem.19, 540–550 (1971).

    Google Scholar 

  • Born, G. V. R.: Mechanism of platelet aggregation and of its inhibition by adencsine derivatives. Fed. Proc.26, 115–117 (1967).

    Google Scholar 

  • Cohen, J., Bohak, Z., Vries, A., de, Katchalski, E.: Thrombosthenin M. Purification and interaction with thrombin. Europ. J. Biochem.10, 388–394 (1969).

    Google Scholar 

  • Ebert, J.C., Schimmelbusch, C.: Experimentelle Untersuchungen über Thrombose. Virchows Arch. path. Anat.103, 39–87 (1886).

    Google Scholar 

  • Grette, K.: The contractile protein of the platelets. Studies on the mechanism of thrombin catalyzed hemostatic reactions in blood platelets. Acta physiol. scand.56, Suppl. 195 (1962).

    Google Scholar 

  • Hoffmann-Berling, H.: Adenosintriphosphat als Betriebsstoff von Zellbewegungen. Biochim. biophys. Acta (Amst.)14, 182–194 (1954).

    Google Scholar 

  • Huxley, H. E.: The double array of filaments in cross striated muscle. J. biophys. biochem. Cytol.3, 631–648 (1957).

    Google Scholar 

  • Huxley, H. E.: Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J. molec. Biol.7, 281–308 (1963).

    Google Scholar 

  • Kelly, R. E., Rice, R. V.: Localization of myosin filaments in smooth muscle. J. Cell Biol.37, 105–116 (1968).

    Google Scholar 

  • Keyserlingk, D. G.: Kontraktilität und Ultrastruktur glycerin-extrahierter Fibroblasten aus der Gewebekultur. Protoplasma67, 391–406 (1969).

    Google Scholar 

  • Keyserlingk, D. G.: Über die Bedeutung des intracellularen, kontraktilen Systems für die Lokomotion der Fibroblasten. Cytobiologie1, 259–272 (1970a).

    Google Scholar 

  • Keyserlingk, D. G.: Ultrastruktur glycerinextrahierter Dünndarmmuskelzellen der Ratte vor und nach Kontraktion. Z. Zellforsch.111, 559–571 (1970b).

    Google Scholar 

  • Keyserlingk, D. G.: The ultrastructure of contractile elements in smooth muscle cells during various functional stages. In: Vascular smooth muscle (ed. by E. Betz) p. 121–124. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Movat, H. Z., Weiser, W. J., Glynn, M. F., Mustard, J. F.: Platelet phagocytosis and aggregation. J. Cell Biol.27, 531–542 (1965).

    Google Scholar 

  • Portzehl, H.: Gemeinsame Eigenschaften von Zell- und Muskelkontraktilität. Biochim. biophys. Acta (Amst.)14, 195–202 (1954).

    Google Scholar 

  • Rodman, N. F., Mason, R. G.: Platelet-platelet interaction: relationship to hemostasis and thrombosis. Fed. Proc.26, 95–105 (1967).

    Google Scholar 

  • Rodman, N. F., Mason, R. G., McDevitt, N. B., Brinkhous, K. M.: Morphologic alterations of human blood platelets during early phases of clotting. Amer. J. Path.40, 271–284 (1962).

    Google Scholar 

  • Rodman, N. F., Painter, J. C., McDevitt, N. B.: Platelet disintegration during clotting. J. Cell Biol.16, 225–241 (1963).

    Google Scholar 

  • Salzman, E. W., Chambers, D. A., Neri, L. L.: Possible mechanism of aggregation of blood platelets by adenosine diphosphate. Nature (Lond.)210, 167–169 (1966).

    Google Scholar 

  • Schulz, H.: Thrombocyten und Thrombose im elektronenmikroskopischen Bild, S. 76–77. Berlin-Heidelberg-New York: Springer 1968.

    Google Scholar 

  • Weber, H. H., Portzehl, H.: Kontraktion, ATP-Cyclus und fibrilläre Proteine des Muskels. Ergebn. Physiol.47, 369–468 (1952).

    Google Scholar 

  • Weissenfels, N., Schäfer-Danneel, S.: Nachweis des kontraktilen Substrats im Grundplasma gezüchteter Zellen. Zool. Anz., Suppl.-Bd.33, 383–388 (1969).

    Google Scholar 

  • White, J. G.: The substructure of human platelet microtubules. Blood32, 638–644 (1968).

    Google Scholar 

  • Zucker-Franklin, D., Bloomberg, N.: Microfibrils of blood platelets: Their relationship to microtubules and the contractile protein. J. clin. Invest.48, 165–175 (1969).

    Google Scholar 

  • Zucker-Franklin, D., Nachman, R. L., Marcus, A. J.: Ultrastructure of thrombosthenin, the contractile protein of human blood platelets. Science157, 945–947 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keyserlingk, D.G., Struwe, K. The ultrastructural arrangement of thrombosthenin in glycerol extracted thrombocytes. Z.Zellforsch 138, 557–567 (1973). https://doi.org/10.1007/BF00572296

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00572296

Key words

Navigation