Skip to main content
Log in

Characterization of a panel of somatic cell hybrids for subregional mapping along 11p and within band 11p13

Subdivision of the WAGR complex region

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

The short arm of chromosome 11 carries genes involved in malformation syndromes, including the aniridia/genitourinary abnormalities/mental retardation (WAGR) syndrome and the Beckwith-Wiedemann syndrome, both of which are associated with an increased risk of childhood malignancy. Evidence comes from constitutional chromosomal aberrations and from losses of heterozygosity, limited to tumor cells, involving regions 11p13 and 11p15. In order to map the genes involved more precisely, we have fused a mouse cell line with cell lines from patients with constitutional deletions or translocations. Characterization of somatic cell hybrids with 11p-specific DNA markers has allowed us to subdivide the short arm into 11 subregions, 7 of which belong to band 11p13. We have thus defined the smallest region of overlap for the Wilms' tumor locus bracketed by the closest proximal and distal breakpoints in two of these hybrids. The region associated with the Beckwith-Wiedemann syndrome spans the region flanked by two 11p15.5 markers, HRAS1 and HBB. These hybrids also represent useful tools for mapping new markers to this region of the human genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ali IU, Lidereau R, Theillet C, Callahan R (1987) Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia. Science 238:185–188

    Google Scholar 

  • Barker D, Holm T, White R (1984) A locus on chromosome 11p with multiple restriction site polymorphisms. Am J Hum Genet 36: 1159–1171

    Google Scholar 

  • Beckwith JB (1963) Extreme cytomegaly of the adrenal fetal cortex omphalocele, hyperplasia: another syndrome? Western Society for Pediatric Research, Los Angeles, Calif

    Google Scholar 

  • Bell GI, Merryweather JP, Sanchez-Pescador R, Stempien MM, Priestley L, Scott J, Rall LB (1984) Sequence of a cDNA clone encoding human preproinsulin-like growth factor II. Nature 310: 775–777

    Google Scholar 

  • Cavenee KH, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL, Murphree AL, White RL (1983) Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305:779–784

    Google Scholar 

  • Candelier JJ, Couillin P, Eydoux P, Boué A (1986) Etude antigénique de la différenciation du rein humain par des anticorps monoclonaux. CR Acad Sci Paris Ser III 302:303–308

    Google Scholar 

  • Chang EH, Gonda MA, Ellis RW, Scolnick EM, Lowy DR (1982) Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses. Proc Natl Acad Sci USA 79:4848–4852

    Google Scholar 

  • Couillin P, Crainic R, Cabau P, Horodniceanu F, Boué A (1982) Strain-specific type I poliovirus-neutralizing monoclonal antibodies. Ann Virol (Institut Pasteur) 133E:315–323

    Google Scholar 

  • Couillin P, Candelier JJ, Eydoux P, Azoulay M, Nguyen Van Cong, Delcamp M, Ravisé N, Grisard MC, Junien C, Boué A (1987) Three monoclonal antibodies recognizing 3 different epitopes encoded by the chromosome segment 11p13 (abstract). (9th International Workshop on Human Gene Mapping). Cytogenet Cell Genet 46:598

    Google Scholar 

  • Couillin P, Azoulay M, Metezeau P, Grisard MC, Junien C (1989) The gene for catalase is assigned between the antigen loci MIC 4 and MIC 11. Genomics 4:7–11

    Google Scholar 

  • Craig RK, Hall L, Edbrooke MR, Allison J, McIntyre I (1982) Partial nucleotide sequence of human calcitonin precursor mRNA nucleotide sequence of human calcitonin. Nature 295:345–347

    Google Scholar 

  • Dalchau R, Kirkley J, Fabre JW (1980) Monoclonal antibody to a human brain granulocyte T lymphocyte antigen probably homologous to the w 3/13 antigen of the rat. Eur J Immunol 10:745–749

    Google Scholar 

  • Dull JT, Gray A, Hayflick JS, Ulrich A (1984) Insulin-like growth factor II precursor gene organization in relation to insulin gene family. Nature 310:777–781

    Google Scholar 

  • Fearon ER, Vogelstein B, Feinberg AP (1984) Somatic deletion and duplication of genes on chromosome 11 in Wilms' tumor. Nature 309:176–178

    Google Scholar 

  • Fearon E, Feinberg A, Hamilton S, Vogelstein B (1985) Loss of genes on the short arm of chromosome 11 in bladder cancer. Nature 318:377–380

    Google Scholar 

  • Francke U, Holmes LB, Atkins L, Riccardi VM (1979) Aniridia-Wilms' tumor association: evidence for specific deletion of 11p13. Cytogenet Cell Genet 24:185–192

    Google Scholar 

  • Francke U, Foellmer BE, Haynes BF (1983) Chromosome mapping of human cell surface molecules: monoclonal anti-human lymphocyte antibodies 4F2, A3D8, and A1G3 define antigens controlled by different regions of chromosome 11. Somatic Cell Genet 9: 333–344

    Google Scholar 

  • Glaser T, Lewis WH, Bruns G, Watkins PC, Rogler CE, Shows TB, Powers VE, Willard HF, Goguen JM, Simola KO, Housman DE (1986) The β-subunit of follicle-stimulating hormone is deleted in patients with aniridia and Wilms' tumor, allowing a further definition of the WAGR locus. Nature 321:882–887

    Google Scholar 

  • Gilgenkrantz S, Vigneron C, Gregoire MJ, Pernot C, Raspiller A (1982) Association of del(11)(p15.1p12), aniridia catalase deficiency and cardiomopathy. Am J Med Genet 13:39–49

    Google Scholar 

  • Goodfellow PN, Banting G, Wiles MV, Tunnacliffe A, Parkar M, Solomon E, Dalchau R, Farre JW (1982) The gene, MIC4, which controls expression of the antigen defined by monoclonal antibody F10.44.2 is on human chromosome 11. Eur J Immunol 12: 659–663

    Google Scholar 

  • Gusella JF, Jones C, Kao FT, Housman D, Puck THT (1982) Genetic fine-structure mapping in human chromosome 11 by use of repetitive DNA sequences. Proc Natl Acad Sci USA 79:7804–7808

    Google Scholar 

  • Habib R, Loirat C, Gubler MC, Niaudet P, Bensmann A, Levy M, Broyer M (1985) The nephropathy associated with male pseudo-hermaphroditism and Wilms' tumor (Drash syndrome): a distinctive glomerular lesion. Clin Nephrol 24:269–278

    Google Scholar 

  • Haynes BE, Hemler ME, Thomas CA, Strominger JL, Fauci AS (1981) Characterization of a monoclonal antibody (4F2) that binds to human monocytes and to a subset of activated lymphocytes. J Immunol 126:1409–1414

    Google Scholar 

  • Henry I, Grandjouan S, Azoulay M, Huerre-Jeanpierre C, Couillin P, Junien C (1987a) Mitotic recombination with loss of heterozygosity distal to FSHB in a WAGR associated nephroblastoma. (9th International Workshop on Human Gene Mapping) Cytogenet Cell Genet 46:628–629 (abstr)

    Google Scholar 

  • Henry I, Huerre-Jeanpierre C, Azoulay M, Chaussain JL, Junien C (1987b) A recessive oncogene for familial adrenocortical carcinoma (ADCC) maps to 11p. (9th International Workshop on Human Gene Mapping) Cytogenet Cell Genet 46:629 (abstr)

    Google Scholar 

  • Huerre C, Despoisse S, Gilgenkrantz S, Lenoir GM, Junien C (1983) c-Ha-ras1 is not deleted in aniridia-Wilms' tumor association. Nature 305:638–881

    Google Scholar 

  • Huerre-Jeanpierre C, Azoulay M, Henry I, Serre JL, Lavedan C, Couillin P, Antignac C, Salles AM, Lewis WH, Glaser T, Bernheim A, Junien C (1987) Malformation syndromes and predisposition to tumor: isolation and localization of 11p markers. (9th International Workshop on Human Gene Mapping). Cytogenet Cell Genet 46:631 (abstr)

    Google Scholar 

  • Journel H, Lucas J, Allaire C, Le Mée F, Defauve G, Lecornu M, Jouan H, Roussey M, Le Marec B (1985) Trisomy 11p15 and Beckwith-Wiedemann syndrome: report of two new cases. Ann Génét (Paris) 28:97–101

    Google Scholar 

  • Kazazian HH, Junien C (1987) Report of the committe on the genetic constitution of chromosome 10,11 and 12. (9th International Workshop on Human Gene Mapping) cytogenet Cell Genet 46: 188–212

    Google Scholar 

  • Kessling AM, Horsthemke B, Humphries SR (1985) A study of DNA polymorphisms around the human apolipoprotein AI gene in hyperlipidaemic and normal individuals. Clin Genet 28:296–306

    Google Scholar 

  • Knudson AG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823

    Google Scholar 

  • Korneluk RG, Quan F, Lewis WH, Guise RS, Willard HF, Tzetis-Holmes M, Gravel RA (1984) Isolation of human fibroblast catalase cDNA clones: sequence of clones derived from spliced and unspliced RNA. J Biol Chem 259:13819–13823

    Google Scholar 

  • Koufos A, Hansen MF, Lampkin BC, Workman ML, Copeland NG, Jenkins NA, Cavenee WK (1984) Loss of alleles at loci on human chromosome 11 during genesis of Wilms' tumor. Nature 309:170–172

    Google Scholar 

  • Koufos A, Hansen MF, Copeland GN, Jenkins NA, Lampkin BC, Cavenee WK (1985) Loss of heterozygosity in three embryonal tumours suggests a common pathogenetic mechanism. Nature 316:330–334

    Google Scholar 

  • Lavedan C, Barichard F, Azoulay M, Couillin P, Molina-Gomez D, Nicolas H, Quack B, Rethoré MO, Noël B, Junien C (1989) Molecular definition of de novo and genetically transmitted WAGR-associated rearrangements of 11p13. Cytogenet Cell Genet (in press)

  • Lawn RM, Fritsch EF, Parker RC, Blacke G, Maniatis T (1978) The isolation and characterization of linked-β-globin genes from a cloned library of human DNA. Cell 15:1157–1174

    Google Scholar 

  • Moore JW, Hyman S, Antonarakis SE, Mules EH, Thomas GA (1986) Familial isolated aniridia associated with a translocation involving chromosomes 11 and 22 t(11;22)(p13;q12.2). Hum Genet 72:297–302

    Google Scholar 

  • Orkin SH, Godman BS, Sallan SE (1984) Development of homozygosity for chromosome 11p markers in Wilms' tumor. Nature 309:172–174

    Google Scholar 

  • Porteous DJ, Bickmore W, Christie S, Boyd PA, Cranston G, Fletcher JM, Gosden JR, Rout D, Seawright A, Simola KOJ, Van Heyningen V, Hastie ND (1987) HRAS1-selected chromosome transfer generates markers that colocalize aniridia and genitourinary dysplasia-associated translocation breakpoints and the Wilms tumor gene within band 11p13. Proc Natl Acad Sci USA 84:5355–5359

    Google Scholar 

  • Reeve AE, Housiaux PJ, Gardner RJM, Chewings WE, Grindley RM, Millow LJ (1984) Loss of a Harvey ras allele in sporadic Wilms' tumor. Nature 303:174–176

    Google Scholar 

  • Rogler CE, Sherman M, Su CY, Shafritz DA, Summers J, Shows TB, Henderson A, Kewr M (1985) Deletion in chromosome 11p associated with hepatitis B: integretion site in hepatocellular carcinoma. Science 230:319–322

    Google Scholar 

  • Sanders-Haigh L, Anderson F, Francke U (1980) The β-globin gene is on the short arm of human chromosome 11. Nature 283:683–686

    Google Scholar 

  • Schullman M, Wilde CD, Kohler G (1978) A better cell line for making hybridoma cell lines. Nature 276:269–270

    Google Scholar 

  • Scrable HJ, Witte DP, Lampkin BC, Cavenee WK (1987) Chromosomal localization of the human rhabdomyosarcoma locus by mitotic recombination mapping. Nature 323:645–647

    Google Scholar 

  • Seabright (1971) A rapid banding technic for human chromosomes. Lancet II:971

    Google Scholar 

  • Simola KOJ, Knurutila S, Kaitila I, Pirkola A, Pohja P (1983) Familial aniridia and translocation t(4;11)(q22;p13) without Wilms' tumor. Hum Genet 63:158–161

    Google Scholar 

  • Southern EM (1975) Deletion of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Google Scholar 

  • Taisne C de, Gegonne A, Stehelin D, Bernheim A, Berger R (1984) Chromosomal localization of the human proto-oncogene c-ets 1. Nature 310:581–583

    Google Scholar 

  • Theillet C, Lidereau R, Escot C, Hutzell P, Brunet M, Gest J, Schlom J, Callahan R (1986) Loss of a c-Ha-ras-1 allele and aggressive human primary breast carcinomas. Cancer Res 46:4776–4781

    Google Scholar 

  • Turleau C, Grouchy J de (1985) Beckwith-Wiedemann syndrome. Clinical comparison between patients with and without 11p15. Ann Génét (Paris) 28:93–96

    Google Scholar 

  • Turleau C, Grouchy J de, Tournade MF, Gagnadoux MF, Junien C (1984) Del 11p/aniridia complex. Report of 3 patients and review of 37 observations from the literature. Clin Genet 26:356–362

    Google Scholar 

  • Van Heyningen V, Boyd PA, Seawright A, Fletcher JM, Fantes JA, Buckton KE, Spowart G, Porteous DJ, Hill RE, Newton MS, Hastie ND (1985) Molecular analysis of chromosome II deletions in aniridia-Wilms' tumor syndrome. Proc Natl Acad Sci USA 82: 8592–8596

    Google Scholar 

  • Vasiceck TJ, McDeviti BE, Freeman MW, Feenick BJ, Hendy GN, Potts JT, Rich A, Kronenerg HM (1983) Nucleotide sequence of the human parathyroid hormone gene. Proc Natl Acad Sci USA 80:2127–2131

    Google Scholar 

  • Wahl GM, Stern M, Stark GR (1979) Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci USA 76:3683–3687

    Google Scholar 

  • Watkins PL, Eddy R, Beck AK, Vellucci V, Leverone B, Tanzi RE, Gusella JF, Shows TB (1982) DNA sequence and regional assignment of the human folliculo-stimulating hormone β subunit gene to the short arm of human chromosome 11. DNA 6:205–212

    Google Scholar 

  • Weissman BE, Saxon PJ, Pasquale SR, Jones GR, Geiser AG, Stanbridge EJ (1987) Introduction of a normal chromosome 11 into a Wilms' tumor cell line controls its tumorigenic expression. Science 236:175–180

    Google Scholar 

  • Wiedemann HR (1964) Complexe malformatif familial avec hernie ombilicale et macroglossie: un “syndrome nouveau”. J Genet Hum 13:223–232

    Google Scholar 

  • Wiedemann HR (1983) Tumors and hemihypertrophy associated with Beckwith-Wiedemann syndrome. Eur J Pediatr 141:129

    Google Scholar 

  • Woodroofe MN, Tunnacliffe A, Pym B, Goodfellow PN, Walsh FS (1984) Human muscle cell surface antigen 16.3A5 is encoded by a gene on chromosome 11. Somatic Cell Mol Genet 10:535–540

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couillin, P., Azoulay, M., Henry, I. et al. Characterization of a panel of somatic cell hybrids for subregional mapping along 11p and within band 11p13. Hum Genet 82, 171–178 (1989). https://doi.org/10.1007/BF00284053

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00284053

Keywords

Navigation