Skip to main content

Advertisement

Log in

Molecular analysis of eight mutations in FBN1

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract.

Mutations in the gene encoding extracellular glycoprotein fibrillin-1 (FBN1) cause Marfan syndrome (MFS) and other related connective tissue disorders. In this study, eight mutations have been detected in MFS patients by heteroduplex analysis. These comprise two missense mutations, C1835Y and C2258Y in calcium-binding epidermal growth factor-like domains, two nonsense mutations, R1541X and R2394X in transforming growth factor β1-binding protein-like domains, one splice site mutation, which has been detected previously, and three small insertions or deletions resulting in a frameshift. Fibroblast cells have been established from seven of the MFS patients and the biochemical effects of the mutations on fibrillin-1 synthesis and secretion assessed by pulse-chase analysis. Each cysteine mutation resulted in the delayed secretion of fibrillin-1 and both nonsense and frameshift mutations caused reduced levels of synthesis and/or deposition of fibrillin-1. Indirect immunofluorescence and rotary shadowing electron microscopy analysis of fibrillin microfibrils revealed no major differences between normal and patient samples. We discuss the relative merits of the biochemical techniques used in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halliday, D., Hutchinson, S., Kettle, S. et al. Molecular analysis of eight mutations in FBN1 . Hum Genet 105, 587–597 (1999). https://doi.org/10.1007/s004399900190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004399900190

Navigation