Skip to main content
Log in

Cloning, mapping and characterization of thePseudomonas aeruginosa hemL gene

  • Short Communication
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

The rate-limiting step in the biosynthesis of tetrapyrroles is the formation of 5-aminolevulinic acid (ALA). InPseudomonas aeruginosa ALA is synthesized via a two-step reaction from aminoacylated tRNAGlu by the action of glutamyl-tRNA reductase and glutamate-1-semialdehyde-2,1-amino mutase. To initiate an investigation of the regulation of the second step in ALA formation, thehemL gene was cloned fromP. aeruginosa by complementation of anEscherichia coli hemL mutant. An open reading frame of 1284 by encoding a protein of 427 amino acids with a calculated molecular mass of 45 404 Da was identified. ThehemL gene was mapped to theSpeI fragment Z and theDpnI fragment J1 of theP. aeruginosa chromosome corresponding approximately to min 0.3–0.9. One transcription start site was located 280 by upstream of the translational start site of thehemL gene. No classicalσ 70-dependent promoter was detected. Oxygen stress induced by the addition of H2O2 to the growth medium led to an approximately 3.5-fold increase inhemL expression as determined by mRNA dot blot assays. Anaerobic denitrifying growth led to a 2-fold stimulation ofhemL transcription. Two additional open reading frames were detected downstream of thehemL gene. One open reading frame (orf1) of 549 by encodes a protein of 182 amino acids with a calculated molecular mass of 19 638 Da. The second open reading frame (orf2) of 1341 by encodes a protein of 446 amino acids with a calculated molecular mass of 49 967 Da and showed similarity to a protein of unknown function fromMycobacterium leprae and to a P-methylase fromStreptomyces hygroscopicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Avissar YJ, Beale SI (1989) Identification of the enzymatic basis for ∂-aminolevulinic acid auxotrophy in ahemA mutant ofEscherichia coli. J Bacteriol 171:2919–2924

    PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JD, Smith JA, Struhl K (eds) (1987) Current protocols in molecular biology. Greene Publishing Associates and Wiley Interscience, New York

    Google Scholar 

  • Boorstein WR, Craig EA (1989) Primer extension analysis of RNA. Methods Enzymol 180:247–369

    Google Scholar 

  • Chen EY, Seeburg PH (1985) Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:165–170

    PubMed  Google Scholar 

  • Darie S, Gunsalus RP (1994) Effect of heme and oxygen availability onhemA gene expression inEscherichia coli: role of thefnr, arcA, andhimA gene products. J Bacteriol 176:5270–5276

    PubMed  Google Scholar 

  • Dailey HA (ed) (1990) Biosynthesis of heme and chlorophylls. McGraw-Hill, Hightstown, NJ.

    Google Scholar 

  • Demple B (1991) Regulation of bacterial oxidative stress genes. Annu Rev Genet 25:315–337

    PubMed  Google Scholar 

  • Elliott T, Roth JR (1989) Heme-deficient mutants ofSalmonella typhimurium: two genes required for ALA synthesis. Mol Gen Genet 216:303–314

    PubMed  Google Scholar 

  • Haas D, Gamper M, Zimmermann A (1992) Anaerobic control inPseudomonas aeruginosa In: Galli E, Silver S, Witholt B (eds)Pseudomonas: Molecular biology and biotechnology. American Society for Microbiology, Washington DC, pp 177–187

    Google Scholar 

  • Hino S, Ishida A (1973) Effect of oxygen on heme and cytochrome content of some facultative bacteria. Enzyme 16:42–49

    PubMed  Google Scholar 

  • Holloway, BW, Römling, U, Tümmler, B (1994) Genomic mapping ofPseudomonas aeruginosa PAO. Microbiology 140:2907–2929

    PubMed  Google Scholar 

  • Hungerer C, Troup B, Römling U, Jahn D (1995) Regulation of thehemA gene during 5-aminolevulinic acid formation inPseudomonas aeruginosa. J Bacteriol 177:1435–1443

    PubMed  Google Scholar 

  • Ilag LL, Jahn D (1992) Activity and spectroscopic features of theEscherichia coli glutamate 1-semialdehyde aminotransferase and the putative active site mutant K265R. Biochemistry 31:7143–7151

    PubMed  Google Scholar 

  • Ilag LL, Jahn D, Eggertsson G, Söll D (1991) TheEscherichia coli hemL gene encodes glutamate 1-semialdehyde aminotransferase. J Bacteriol 173:3408–3413

    PubMed  Google Scholar 

  • Ilag LL, Kumar AM, Söll D (1994) Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation inArabidopsis. Plant Cell 6:265–275

    PubMed  Google Scholar 

  • Jacobs NJ, Jacobs JM, Morgan HE Jr (1972) Comparative effect of oxygen and nitrate on protoporphyrin and heme synthesis fromδ-amino levulinic acid in bacterial cultures. J Bacteriol 112:1444–1445

    PubMed  Google Scholar 

  • Jacobs NJ, Jacobs JM, Mills BA (1973) Role of oxygen in the late steps of heme synthesis in Pseudomonads andEscherichia coli. Enzyme 16:50–56

    PubMed  Google Scholar 

  • Jahn D, Chen MW, Söll D (1991a) Purification and functional characterization of the glutamate 1-semialdehyde aminotransferase fromChlamydomonas reinhardtii. J Biol Chem 266:161–167

    PubMed  Google Scholar 

  • Jahn D, Michelsen U, Söll D (1991b) Two glutamyl-tRNA reductase activities inEscherichia coli. J Biol Chem 266:2542–2548

    PubMed  Google Scholar 

  • Jahn D, Verkamp E, Söll D (1992) Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci 17:215–218

    PubMed  Google Scholar 

  • Jin S, Ishimoto K, Lory S (1994) Nucleotide sequence of therpoN gene and characterization of two downstream open reading frames inPseudomonas aeruginosa. J Bacteriol 176:1316–1322

    PubMed  Google Scholar 

  • Jordan PM (ed) (1991) Biosynthesis of tetrapyrroles. In: Neuberger A, van Deenen LLM (eds) New comprehensive biochemistry, volume 19 Elsevier, Amsterdam

    Google Scholar 

  • MacGregor CH, Wolff JA, Arora SK, Phibbs PV Jr (1991) Cloning of a catabolite repression control (crc) gene fromPseudomonas aeruginosa, expression of the gene inEscherichia coli, and identification of the gene product inPseudomonas aeruginosa. J Bacteriol 173:7204–7212

    PubMed  Google Scholar 

  • Matters GL, Beale SI (1994) Structure and light-regulated expression of thegsa gene encoding the chlorophyll biosynthetic enzyme glutamate 1-semialdehyde aminotransferase inChlamydomonas reinhardtii. Plant Mol Biol 24:617–629

    PubMed  Google Scholar 

  • Mercenier A, Simon JP, Haas D, Stalon V (1980) Catabolism ofl-arginine byPseudomonas aeruginosa. J Gen Microbiol 116:381–389

    PubMed  Google Scholar 

  • Ornston LN, Stanier RY (1966) The conversion of catechol and protocatechuate toβ-ketoadipate byPseudomonas putida. J Biol Chem 241:3776–3786

    PubMed  Google Scholar 

  • Philipp-Dornston WK, Doss M (1973) Comparision of porphyrin and heme biosynthesis in various heterotrophic bacteria. Enzyme 16:57–64

    PubMed  Google Scholar 

  • Römling U, Tümmler B (1991) The impact of two-dimensional pulsed-field gel electrophoresis techniques for the consistent and complete mapping of bacterial genomes: refined physical map ofPseudomonas aeruginosa PAO. Nucleic Acids Res 19:3199–3206

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, (2nd edn) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sawers RG (1991) Identification and molecular characterization of a transcriptional regulator fromPseudomonas aeruginosa PAO1 exhibiting structural and functional similarity to theFnr protein ofEscherichia coli. Mol Microbiol 5:1469–1481

    PubMed  Google Scholar 

  • Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–88

    PubMed  Google Scholar 

  • Toledano MB, Kullik I, Trinh F, Baird PT, Schneider TD, Storz G (1994) Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell 78: 897–909

    PubMed  Google Scholar 

  • Troup B, Jahn M, Hungerer C, Jahn D (1994) Isolation of thehemF operon containing the gene for theEscherichia coli aerobic coproporphyrinogen III oxidase by in vivo complementation of a yeastHEM13 mutant. J Bacteriol 176:673–680

    PubMed  Google Scholar 

  • Zimmermann A, Reimann C, Galimand M, Haas D (1991) Anaerobic growth and cyanide synthesis ofPseudomonas aeruginosa depend onanr, a regulatory gene homologous withfnr ofEscherichia coli. Mol Microbiol 5:1483–1490

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. F. Lengeler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hungerer, C., Troup, B., Römling, U. et al. Cloning, mapping and characterization of thePseudomonas aeruginosa hemL gene. Molec. Gen. Genet. 248, 375–380 (1995). https://doi.org/10.1007/BF02191605

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02191605

Key words

Navigation