Skip to main content
Log in

Cloning and sequencing of the hemA gene of Rhodobacter capsulatus and isolation of a δ-aminolevulinic acid-dependent mutant strain

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The Rhodobacter capsulatus hemA gene, coding for the enzyme δ-aminolevulinic acid synthase (ALAS), was isolated from a genome bank by hybridization with a hemT probe from Rhodobacter sphaeroides. Subcloning of the initial 3.9 kb HindIII fragment allowed the isolation of a 2.5 kb HindIII-BglII fragment which was able to complement the δ-aminolevulinic acid-requiring (ALA-requiring) Escherichia coli mutant SHSP19. DNA sequencing revealed an open reading frame coding for a protein with 401 amino acids which displayed similarity to the amino acid sequences of other known ALASs. However, no resemblance was seen to the HemA protein of E. coli K12. Based on the sequence data, an ALA-requiring mutant strain of R. capsulatus was constructed by site-directed insertion mutagenesis. Introduction of a plasmid, containing the hemA gene of R. capsulatus on the 3.9 kb HindIII fragment, restored ALA-independent growth of the mutant indicating that there is only one gene for ALA biosynthesis in R. capsulatus. Transfer of the R′ factor pRPS404 and hybridization analysis revealed that the ALAS gene is not located within the major photosynthetic gene cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams CW, Forrest ME, Cohen SN, Beatty T (1989) Structural and functional analysis of transcriptional control of the Rhodobacter capsulatus puf operon. J Bacteriol 171:473–482

    Google Scholar 

  • Armstrong GA, Alberti M, Leach F, Hearst JE (1989) Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol Gen Genet 216:254–268

    Google Scholar 

  • Avissar YJ, Beale SI (1989) Identification of the enzymatic basis for δ-aminolevulinic acid auxotrophy in a hemA mutant of Escherichia coli. J Bacteriol 171:2919–2924

    Google Scholar 

  • Avissar YJ, Ormerod JG, Beale SI (1989) Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups. Arch Microbiol 151:513–519

    Google Scholar 

  • Bawden MJ, Borthwick IA, Healy HM, Morris CP, May BK, Elliott WH (1987) Sequence of human 5-aminolevulinate synthase cDNA. Nucleic Acids Res 15:8563

    Google Scholar 

  • Beale SJ, Castelfranco PA (1974) The biosynthesis of δ-aminolevulinic acid in higher plants. II. Formation of 14C-δ-aminolevulin-ic acid from labeled precursors in greening plant tissues. Plant Physiol 53:297–303

    Google Scholar 

  • Beringer JE, Beynon JL, Buchanan-Wollaston AV, Johnston AWB (1978) Transfer of drug-resistance transposon Tn5 to Rhizobium. Nature 276:633–634

    Google Scholar 

  • Biel SW, Wright MS, Biel AJ (1988) Cloning of the Rhodobacter capsulatus hemA gene. J Bacteriol 170:4382–4384

    Google Scholar 

  • Borthwick IA, Srivastava G, Day AR, Pirola BA, Snoswell MA, May BK, Elliott WH (1985) Complete nucleotide sequence of hepatic 5-aminolevulinate synthase precursor. Eur J Biochem 150:481–484

    Google Scholar 

  • Burnham BF, Lascelles J (1963) Control of porphyrin biosynthesis through a negative-feedback mechanism. Studies with preparations of δ-aminolaevulate synthetase and δ-aminolaevulate dehydratase from Rhodopseudomonas spheroides. Biochem J 87:462–472

    Google Scholar 

  • Cohen SN, Chang ACY, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci USA 69:2110–2114

    CAS  PubMed  Google Scholar 

  • Cohen-Bazire G, Sistrom WR, Stanier RY (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49:25–68

    Google Scholar 

  • Ditta G, Schmidhauser T, Yakobson E, Lu P, Liang X-W, Finlay DR, Guiney D, Helinski DR (1985) Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13:149–153

    Google Scholar 

  • Drews G (1983) Mikrobiologisches Praktikum. Springer Verlag, Berlin, p 62

    Google Scholar 

  • Drews G, Oelze J (1981) Organization and differentiation of membranes of phototrophic bacteria. Adv Microb Physiol 22:1–92

    Google Scholar 

  • Drolet M, Péloquin L, Echelard Y, Cousineau L, Sasarman A (1989) Isolation and nucleotide sequence of the hemA gene of Escherichia coli K12. Mol Gen Genet 216:347–352

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    CAS  PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B (1984) Addendum: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 137:266–267

    CAS  PubMed  Google Scholar 

  • Granick S, Beale SI (1978) Hemes, chlorophylls, and related compounds: biosynthesis and metabolic regulation. Adv Enzymol 46:33–203

    Google Scholar 

  • Kannangara GG, Gough SP, Brugant P, Hoober JK, Kahn A, Von Wettstein D (1988) tRNAGlu as a cofactor in δ-aminolevulinate biosynthesis: steps that regulate chlorophyll synthesis. TIBS 13:139–143

    Google Scholar 

  • Kaufmann N, Reidl HH, Golecki JR, Garcia AF, Drews G (1982) Differentiation of the membrane system in cells of Rhodopseudomonas capsulata after transition from chemotrophic to phototrophic growth conditions. Arch Microbiol 131:313–322

    Google Scholar 

  • Kaufmann N, Hüdig H, Drews G (1984) Transposon Tn5 mutagenesis of genes for the photosynthetic apparatus in Rhodopseudomonas capsulata. Mol Gen Genet 198:153–158

    Google Scholar 

  • Kikuchi G, Kumor A, Talmage P, Shemin D (1958) The enzymatic synthesis of δ-aminolevulinic acid. J Biol Chem 233:1214–1219

    Google Scholar 

  • Klug G, Drews G (1984) Construction of a gene bank of Rhodopseudomonas capsulata using a broad host range DNA cloning system. Arch Microbiol 139:319–325

    Google Scholar 

  • Kröger M, Kröger-Block A (1984a) Extension of a flexible computer program for handling DNA sequence data. Nucleic Acids Res 12:113–120

    Google Scholar 

  • Kröger M, Kröger-Block A (1984b) Simplified computer programs for search of homology within nucleotide sequences. Nucleic Acids Res 12:193–201

    Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    CAS  PubMed  Google Scholar 

  • Lascelles J, Altshuler T (1969) Mutant strains of Rhodopseudomonas spheroides lacking δ-aminolevulinate synthase: growth, heme, and bacteriochlorophyll synthesis. J Bacteriol 98:721–727

    Google Scholar 

  • Leong SA, Ditta GS, Helinski DR (1982) Heme biosynthesis in Rhizobium. Identification of a cloned gene coding for δ-amino-levulinic acid synthetase from Rhizobium meliloti. J Biol Chem 257:8724–8730

    Google Scholar 

  • Leong SA, Williams PH, Ditta GS (1985) Analysis of the 5′ regulatory region of the gene for 5-aminolevulinic acid synthetase of Rhizobium meliloti. Nucleic Acids Res 13:5965–5976

    Google Scholar 

  • Li J-M, Brathwaite O, Cosloy SD, Russel CS (1989a) 5-aminolevulinic acid synthesis in Escherichia coli. J Bacteriol 171:2547–2552

    Google Scholar 

  • Li J-M, Russell CS, Cosloy SD (1989b) Cloning and structure of the hemA gene of Escherichia coli K-12. Gene 82:209–217

    Google Scholar 

  • Maguire DJ, Day AR, Borthwick IA, Srivastava G, Wigley PL, May BK, Elliott WH (1986) Nucleotide sequence of the chicken 5-aminolevulinate synthase gene. Nucleic Acids Res 14:1379–1391

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Marrs B (1981) Mobilization of the genes for photosynthesis from Rhodopseudomonas capsulata by a promiscuous plasmid. J Bacteriol 146:1003–1012

    Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:20–78

    Article  CAS  PubMed  Google Scholar 

  • Nieth K-F, Drews G (1975) Formation of reaction centers and light-harvesting bacteriochlorophyll-protein complexes in Rhodopseudomonas capsulata. Arch Microbiol 104:77–82

    Google Scholar 

  • O'Neill GP, Chen M-W, Söll D (1989) δ-aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA. FEMS Microbiol Lett 60:255–260

    Google Scholar 

  • Robertson McClung C, Somerville JE, Guerinot ML, Chelm BK (1987) Structure of the Bradyrhizobium japonicum gene hemA encoding 5-aminolevulinic acid synthase. Gene 54:133–139

    Google Scholar 

  • Russel M, Kidd S, Kelley MR (1986) An improved filamentous helper phage for generating single-stranded plasmid DNA. Gene 45:333–338

    Google Scholar 

  • Sandy JD, Davies RC, Neuberger A (1975) Control of 5-aminolevulinate synthetase activity in Rhodopseudomonas spheroides. Biochem J 150:245–257

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    CAS  PubMed  Google Scholar 

  • Sasarman A, Surdeanu M, Horodniceanu T (1968) Locus determining the synthesis of δ-aminolevulinic acid in Escherichia coli K-12. J Bacteriol 96:1882–1884

    Google Scholar 

  • Schoenhaut DS, Curtis PJ (1986) Nucleotide sequence of mouse 5-aminolevulinic acid synthase cDNA and expression of its gene in hepatic and erythroid tissues. Gene 48:55–63

    Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria. Biotechnology 1: 37–45

    Google Scholar 

  • Tai T-N, Moore MD, Kaplan S (1988) Cloning and characterization of the 5-aminolevulinate synthase gene(s) from Rhodobacter sphaeroides. Gene 70:139–151

    Google Scholar 

  • Tichy H-V, Oberlé B, Stiehle H, Schiltz E, Drews G (1989) Genes downstream from pucB and pucA are essential for formation of the B800-850 complex of Rhodobacter capsulatus. J Bacteriol 171:4914–4922

    Google Scholar 

  • Urban-Grimal D, Volland C, Garnier T, Dehoux P, Labbé-Bois R (1986) The nucleotide sequence of the HEM1 gene and evidence for a precursor form of the mitochondrial 5-aminolevulinate synthase in Saccharomyces cerevisiae. Eur J Biochem 156:511–519

    Google Scholar 

  • Verkamp E, Chelm BK (1989) Isolation, nucleotide sequence, and preliminary characterization of the Escherichia coli K-12 hemA gene. J Bacteriol 171:4728–4735

    Google Scholar 

  • Wright MS, Cardin RD, Biel AJ (1987) Isolation and characterization of an aminolevulinate-requiring Rhodobacter capsulatus mutant. J Bacteriol 169:961–966

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  PubMed  Google Scholar 

  • Young DA, Bauer CE, Williams JC, Marrs BL (1989) Genetic evidence for superoperonal organization of genes for photosynthetic pigments and pigment-binding proteins in Rhodobacter capsulatus. Mol Gen Genet 218:1–12

    Google Scholar 

  • Youvan DC, Bylina EJ, Alberti M, Begusch H, Hearst JE (1984) Nucleotide and deduced polypeptide sequences of the photosynthetic reaction-center, B870 antenna, and flanking polypeptides from R. capsulata. Cell 37:949–957

    Google Scholar 

  • Yubisui T, Yoneyama Y (1972) δ-aminolevulinic acid synthetase of Rhodopseudomonas spheroides: purification and properties of the enzyme. Arch Biochem Biophys 150:77–85

    Google Scholar 

  • Zucconi AP, Beatty JT (1988) Posttranscriptional regulation by light of the steady-state levels of mature B800-850 light-harvesting complexes in Rhodobacter capsulatus. J Bacteriol 170:877–882

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Hennecke

Part of this research was presented at the Symposium on Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria, Freiburg, FRG, 2–5 August 1989

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornberger, U., Liebetanz, R., Tichy, HV. et al. Cloning and sequencing of the hemA gene of Rhodobacter capsulatus and isolation of a δ-aminolevulinic acid-dependent mutant strain. Mol Gen Genet 221, 371–378 (1990). https://doi.org/10.1007/BF00259402

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00259402

Key words

Navigation