Skip to main content
Log in

Chromatin structure of the 5′ flanking region of the yeastLEU2 gene

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The chromatin structure of theLEU2 gene and its flanks has been studied by means of nuclease digestion, both with micrococcal nuclease and DNase I. The gene is organized in an array of positioned nucleosomes. Within the promoter region, the nucleosome positioning places the regulatory sequences, putative TATA box and upstream activator sequence outside the nucleosomal cores. The tRNA3 Leu gene possesses a characteristic structure and is protected against nucleases. Most of the 5′ flank is sensitive to DNase I digestion, although no clear hypersensitive sites were found. The chromatin structure is independent of either the transcriptional state of the gene or the chromosomal or episomal location. Finally, in the plasmid pJDB207, which lacks most of the promoter, we have found that the chromatin structure of the coding region is similar to that of the wild-type allele.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MNase:

micrococcal nuclease

ORF:

open reading frame

UAS:

upstream activator sequence

References

  • Almer A, Hörz W (1986) Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of thePHO5/PHO3 locus in yeast. EMBO J 5:2681–2687

    PubMed  CAS  Google Scholar 

  • Almer A, Rudolph H, Hinnen A, Hörz W (1986) Removal of positioned nucleosomes from the yeastPHO5 promoter uponPHO5 induction releases additional upstream activating DNA elements. EMBO J 5:2689–2696

    PubMed  CAS  Google Scholar 

  • Andreadis A, Hsu YP, Kohlhaw GB, Schimmel P (1982) Nucleotide sequence of yeastLEU2 shows 5′-noncoding region has sequences cognate to leucine. Cell 31:319–327

    Article  PubMed  CAS  Google Scholar 

  • Andreadis A, Hsu YP, Hermodson M, Kohlhaw GB, Schimmel P (1984) YeastLEU2. Repression of RNA levels by leucine and primary structure of the gene product. J Biol Chem 259:8059–8062

    PubMed  CAS  Google Scholar 

  • Beggs JD (1978) Transformation of yeast by a replicating hybrid plasmid. Nature 275:104–109

    Article  PubMed  CAS  Google Scholar 

  • Beggs JD (1981) Multiple-copy yeast plasmid vectors. In: Von Wettstein D, Friis J, Kielland-Brandt M, Stenderup A (eds) Molecular genetics in yeast. Alfred Benzon Symp., Munksgaard, Copenhagen, pp 383–390

    Google Scholar 

  • Bergman LW, Stranathan MC, Preis LM (1986) Structure of the transcriptionally repressed phosphate-repressible acid phosphatase gene (PHO5) ofSaccharomyces cerevisiae. Mol Cell Biol 6:38–46

    PubMed  CAS  Google Scholar 

  • Brown HD, Satyanarayana T, Umbarger HE (1975) Biosynthesis of branched-chain amino acids in yeast: effect of carbon source on leucine biosynthetic enzymes. J Bacteriol 121:959–969

    PubMed  CAS  Google Scholar 

  • DeLotto R, Schedl P (1984) Internal promoter elements of transfer RNA genes are preferentially exposed in chromatin. J Mol Biol 179:607–628

    Article  PubMed  CAS  Google Scholar 

  • Drew HR, Calladine CR (1987) Sequence-specific positioning of core histones on an 860 base-pair DNA. Experiment and theory. J Mol Biol 195:143–173

    Article  PubMed  CAS  Google Scholar 

  • Eissenberg JC, Cartwright JL, Thomas GH, Elgin SCR (1985) Select topics in chromatin structure. Annu Rev Genet 19:485–536

    Article  PubMed  CAS  Google Scholar 

  • Emr S, Scheckman R, Flersel MC, Thorner J (1983) An MF α-1-SUC2 (α-factor-invertase) gene fashion for study of protein localization and gene expression in yeast. Proc Natl Acad Sci USA 80:7080–7084

    Article  PubMed  CAS  Google Scholar 

  • Erhart E, Hollenberg CP (1983) The presence of a defectiveLEU2 gene on 2 μm DNA recombinant plasmids ofSaccharomyces cerevisiae is responsible for curing and high copy number. J Bacteriol 156:625–635

    PubMed  CAS  Google Scholar 

  • Friden P, Schimmel P (1988)LEU3 ofSaccharomyces cerevisiae activates multiple genes for branched-chain amino acid biosynthesis by binding to a common decanucleotide core sequence. Mol Cell Biol 8:2690–2697

    PubMed  CAS  Google Scholar 

  • Froman BE, Tait RC, Rodriguez RL (1984) Nucleotide sequence of the 3′ terminal region of theLEU2 gene fromSaccharomyces cerevisiae. Gene 31:257–261

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch AG (1987) The general control of amino acid biosynthetic genes in the yeastSaccharomyces cerevisiae. CRC Crit Rev Biochem 21:277–317

    Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci USA 75:1929–1933

    Article  PubMed  CAS  Google Scholar 

  • Hörz W, Altenburger W (1981) Sequence specific cleavage of DNA by micrococcal nuclease. Nucleic Acids Res 9:2643–2658

    PubMed  Google Scholar 

  • Huibregtse JM, Claire FE, Engelke DR (1987) Comparison of tRNA gene transcription complexes formedin vitro and in nuclei. Mol Cell Biol 7:3212–3220

    PubMed  CAS  Google Scholar 

  • Jiménez A, Davies A (1980) Expression of a transposable antibiotic resistance element inSaccharomyces. Nature 289:869–871

    Article  Google Scholar 

  • Kunkel GR, Martinson HG (1981) Nucleosomes will not form on double-stranded RNA or over poly(dA). poly(dT) tracts in recombinant DNA. Nucleic Acids Res 9:6869–6888

    PubMed  CAS  Google Scholar 

  • Lohr D, Ide G (1979) Comparison of the structure and transcriptional capability of growning phase and stationary yeast chromatin: a model for reversible gene activation. Nucleic Acids Res 6:1909–1927

    PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Martinez-Arias A, Yost HJ, Casadaban MJ (1984) Role of an upstream regulatory element in leucine repression ofSaccharomyces cerevisiae LEU2 gene. Nature 307:740–742

    Article  PubMed  CAS  Google Scholar 

  • Mortimer RK, Schild D (1980) Genetic map ofSaccharomyces cerevisiae. Microbiol Rev 44:519–571

    PubMed  CAS  Google Scholar 

  • Nelson HCM, Finch JT, Luisi BF, Klug A (1987) The structure of an oligo(dA). oligo(dT) tract and its biological implications. Nature 330:221–226

    Article  PubMed  CAS  Google Scholar 

  • Neubauer B, Linxweiler W, Hörz W (1986) DNA engineering shows that nucleosome phasing on the African green monkey satellite is the result of multiple histone-DNA interactions. J Mol Biol 190:639–645

    Article  PubMed  CAS  Google Scholar 

  • Nobile C, Nickol JY, Martin RG (1986) Nucleosome phasing on a DNA fragment from the replication origin of simian virus 40 and rephasing upon cruciform formation of the DNA. Mol Cell Biol 6:2916–2922

    PubMed  CAS  Google Scholar 

  • Pérez-Ortín JE, Estruch F (1988) A rapid method for the screening of plasmids in transformed yeast strains. Curr Microbiol 17:19–22

    Article  Google Scholar 

  • Pérez-Ortín JE, Estruch F, Matallana E, Franco L (1986a) Slidingend-labelling. A method to avoid artifacts in nucleosome positioning. FEBS Lett 208:31–33

    Article  PubMed  Google Scholar 

  • Pérez-Ortín JE, Estruch F, Matallana E, Franco L (1986b) DNase I sensitivity of the chromatin of the yeastSUC2 gene for invertase. Mol Gen Genet 205:422–427

    Article  PubMed  Google Scholar 

  • Pérez-Ortín JE, Estruch F, Matallana E, Franco L (1987) Fine analysis of the chromatin structure of the yeastSUC2 gene and of its changes upon derepression. Comparison between the chromosomal and plasmid-inserted genes. Nucleic Acids Res 15:6937–6956

    PubMed  Google Scholar 

  • Pérez-Ortín JE, Matallana E, Franco L (1989) Chromatin structure of yeast genes. Yeast (in the press)

  • Prunell A (1982) Nucleosome reconstitution on plasmid-inserted poly(dA).poly(dT). EMBO J 1:173–179

    PubMed  CAS  Google Scholar 

  • Ratzkin B, Carbon J (1977) Functional expression of cloned yeast DNA inEscherichia coli. Proc Natl Acad Sci USA 74:487–491

    Article  PubMed  CAS  Google Scholar 

  • Satchwell SC, Drew HR, Travers AA (1986) Sequence periodicities in chicken nucleosome core DNA. J Mol Biol 191:659–675

    Article  PubMed  CAS  Google Scholar 

  • Simpson RT (1986) Nucleosome positioningin vivo andin vitro. BioEssays 4:172–176

    Article  PubMed  CAS  Google Scholar 

  • Struhl K (1982) Promoter elements, regulatory elements, and chromatin structure of the yeasthis3 gene. Cold Spring Harbor Symp Quant Biol 47:901–910

    CAS  Google Scholar 

  • Szent-Györgyi C, Finkelstein DB, Garrad WT (1987) Sharp boundaries demarcate the chromatin structure of a yeast heatshock gene. J Mol Biol 193:71–80

    Article  PubMed  Google Scholar 

  • Thoma F (1986) Protein-DNA interactions and nuclease-sensitive regions determine nucleosome positions on yeast plasmid chromatin. J Mol Biol 190:177–190

    Article  PubMed  CAS  Google Scholar 

  • Thoma F, Simpson RT (1985) Local protein-DNA interactons may determine nucleosome positions on yeast plasmids. Nature 315:250–252

    Article  PubMed  CAS  Google Scholar 

  • Thoma F, Bergman LW, Simpson RT (1984) Nuclease digestion of circular TRP1ARS1 chromatin reveals positioned nucleosomes separated by nuclease-sensitive regions. J Mol Biol 177:715–733

    Article  PubMed  CAS  Google Scholar 

  • Thomas JO, Furber V (1976) Yeast chromatin subunit structure. FEBS Lett 66:274–280

    Article  PubMed  CAS  Google Scholar 

  • Wu C (1980) The 5′ ends ofDrosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 280:854–860

    Article  Google Scholar 

  • Wu C (1984) Activating protein factor binds in vitro to upstream control sequences in heat shock gene chromatin. Nature 311:81–84

    Article  PubMed  CAS  Google Scholar 

  • Zakian VA (1981) Origin of replication fromXenopus laevis mitochondrial DNA promotes high frequency transformation of yeast Proc Natl Acad Sci USA 78:3128–3132

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C.P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-García, J.F., Estruch, F. & Pérez-Ortín, J.E. Chromatin structure of the 5′ flanking region of the yeastLEU2 gene. Molec. Gen. Genet. 217, 464–470 (1989). https://doi.org/10.1007/BF02464918

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02464918

Key words

Navigation