Skip to main content
Log in

Cloning and analysis of Agrobacterium tumefaciens C58 loci involved in glutamine biosynthesis: Neither the glnA (GSI) nor the glnII (GSII) gene plays a special role in virulence

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Using heterologous complementation of a glutamine synthetase deficient (glnA; GS-) Escherichia coli mutant strain and heterologous DNA hybridization probes from Rhizobium meliloti and Bradyrhizobium japonicum, three distinct Agrobacterium tumefaciens loci involved in glutamine biosynthesis were identified. These loci correspond to the glnA (GSI), glnII (GSII) and a third previously unidentified locus, which is capable of complementing an E. coli glnA mutant, but may be cryptic in A. tumefaciens. The gene products encoded by the cloned glnA and glnII loci were identified using maxicells. Single insertion mutations in the glnA (GSI) and glnII (GSII) genes and a glnA glnII double mutant were constructed using gene replacement techniques. These mutant strains were examined for GSI and II activities, for growth on a variety of nitrogen (N) sources and for virulence properties on Kalanchoë plants. Neither glnA (GSI) nor glnII (GSII) were found to be essential for tumour induction on Kalanchoë nor for opine catabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Backman K, Chen YM, Magasanik B (1981) Physical characterization of the glnA-glnG region of the Escherichia coli chromosome. Proc Natl Acad Sci USA 78:3743–4747

    Google Scholar 

  • Bender RA, Jansen KA, Resnick AD, Blumenberg M, Foor F, Magasanik B (1977) Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. J Bacteriol 129:1001–1009

    Google Scholar 

  • Bergey's manual of systematic bacteriology (1984) Vol. 1. Krieg NR, Holt JG (eds) William and Wilkins, Baltimore, London

    Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    Google Scholar 

  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heynecker HL, Boyer HW, Crosa JH, Falkow S (1977) Construction and characterization of new cloning vehicles, II. A multipurpose cloning system. Gene 2:95–113

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • de Bruijn FJ (1987) Tn5 mutagenesis to map genes. Methods Enzymol 154:175–196

    Google Scholar 

  • de Bruijn FJ, Ausubel FM (1981) The cloning and transposon Tn5 mutagenesis of the glnA region of Klebsiella pneumoniae: identification of glnR, a gene involved in the regulation of the nif and hut operons. Mol Gen Genet 183:289–297

    Google Scholar 

  • de Bruijn FJ, Ausubel FM (1983) The cloning and characterization of the glnF (ntrA) gene of Klebsiella pneumoniae: role of glnF (ntrA) in the regulation of nitrogen fixation (nif) and other nitrogen assimilation genes. Mol Gen Genet 192:342–353

    Google Scholar 

  • de Bruijn FJ, Lupski JR (1984) The use of transposon Tn5 mutagenesis in the rapid generation of correlated physical and genetic maps of DNA segments cloned into multicopy plasmids —a review. Gene 27:131–149

    Google Scholar 

  • de Bruijn FJ, Sundaresan V, Szeto WW, Ow DW, Ausubel FM (1984) Regulation of the nitrogen fixation (nif) genes of Klebsiella pneumoniae and Rhizobium meliloti: Role of nitrogen regulation (ntr) genes. In: Veeger C, Newton WE (eds) Advances in nitrogen fixation research. Nijhoff/Junk, The Hague, pp 627–633

    Google Scholar 

  • de Bruijn FJ, Rossbach S, Schell J (1985) Cloning and characterization of glutamine synthetase genes from Rhizobium meliloti 1021, R. sesbania ORS571 and Agrobacterium tumefaciens C58. In: Evans HJ, Bottomley PJ, Newton WE (eds) Nitrogen fixation research progress. Nijhoff, Dordrecht Boston Lancaster, p 218

    Google Scholar 

  • Carlson TA, Chelm BK (1986) Apparent eukaryotic origin of glutamine synthetase II from the bacterium Bradyrhizobium japonicum. Nature 322:568–570

    Google Scholar 

  • Chang ACY, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134:1141–1156

    Google Scholar 

  • Colonna-Romano S, Riccio A, Guida M, Defez R, Lamberti A, Iaccarino M, Arnold W, Priefer U, Pühler A (1987) Tight linkage of glnA and a putative regulatory gene in Rhizobium leguminosarum. Nucleic Acids Res 15:1951–1964

    Google Scholar 

  • Covarrubias L, Cervantes L, Covarrubias A, Soberon X, Vichido I, Blanco A, Kupersztock-Portnoy YM, Bolivar F (1981) Construction and characterization of new cloning vehicles. V. Mobilization and coding properties of pBR322 and several deletion derivatives including pBR327 and pBR328. Gene 13:25–35

    Google Scholar 

  • Darrow RA, Knotts RR (1977) Two forms of glutamine synthetase in free-living root-nodule bacteria. Biochem Biophys Res Commun 78:554–559

    Google Scholar 

  • Darrow RA, Chirst D, Evans WR, Jones BL, Keister DL, Knotts RR (1981) Biochemical and physiological studies on the two glutamine synthetases of Rhizobia. In: Gibson AH, Newton WE (eds) Current perspectives in nitrogen fixation. Australian Academy of Science. Canberra, pp 182–185

    Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for Gram-negative bacteria: Construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351

    Google Scholar 

  • Filser MMK, Moscatelli C, Lambert A, Vincze E, Guida M, Salzano G, Iaccarino M (1986) Characterization and cloning of two Rhizobium leguminosarum genes coding for glutamine synthetase activities. J Gen Microbiol 132:2561–2569

    Google Scholar 

  • Friedman AM, Long SR, Brown SE, Buikema WJ, Ausubel FM (1982) Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene 18:289–296

    Google Scholar 

  • Fuchs RL, Keister DL (1980a) Identification of two glutamine synthetases in Agrobacterium. J Bacteriol 141:996–998

    Google Scholar 

  • Fuchs RL, Keister DL (1980b) Comparative properties of glutamine synthetases I and II in Rhizobium and Agrobacterium spp. J Bacteriol 144:641–648

    Google Scholar 

  • Holsters M, Silva B, Van Vliet F, Genetello C, De Block M, Dhaese P, Depicker A, Inze D, Engler G, Villarroel R, Van Montagu M, Schell J (1980) The functional organization of the nopaline A. tumefaciens plasmid pTiC58. Plasmid 3:212–230

    Google Scholar 

  • Ish-Horowicz D, Burke JF (1981) Rapid and efficient cosmid cloning. Nucleic Acids Res 9:2989–2998

    Google Scholar 

  • Kahl G, Schell J (1982) Molecular biology of plant tumours. Academic Press, New York

    Google Scholar 

  • Koduri RK, Bedwell DM, Brenchley JE (1980) Characterization of a HindIII generated DNA fragment carrying the glutamine synthetase gene of Salmonella typhimurium. Gene 11:227–237

    Google Scholar 

  • Koncz C, Kreuzaler F, Kalman Zs, Schell J (1984) A simple method to transfer, integrate and study expression of foreign genes, such as chicken ovalbumin and actin in plant tumors. EMBO J 3:1029–1037

    Google Scholar 

  • Kustu S, Burton D, Garcia E, McCarter L, McFarland N (1979) Nitrogen control in Salmonella: Regulation by the glnR and glnF gene products. Proc Natl Acad Sci USA 76:4576–4580

    Google Scholar 

  • Long SR (1985) Genetics of Rhizobium nodulation. In: Kosuge T, Nester EW (eds) Plant-microbe interactions, vol. I. Macmillan, New York, London, pp 265–306

    Google Scholar 

  • Maas R (1983) An improved colony hybridization method with significantly increased sensitivity for detection of single genes. Plasmid 10:296–298

    Google Scholar 

  • Magasanik B (1982) Genetic control of nitrogen assimilation in bacteria. Annu Rev Genet 16:135–168

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149:114–122

    Google Scholar 

  • Miflin BJ, Cullimore J (1984) Nitrogen assimilation in the legume-Rhizobium symbiosis: a joint endeavour. In: Verma DPS, Hohn TH (eds) Genes involved in microbe-plant interaction. Springer, Wien New York, pp 129–178

    Google Scholar 

  • Miles CA, Mountain A, Sastry GRK (1987) Cloning of the Agrobacterium tumefaciens C58 trpE gene by complementation in Escherichia coli. Mol Gen Genet 206:169–173

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Murphy PJ, Heycke N, Banfalvi Z, Tate ME, de Bruijn FJ, Kondorosi A, Tempe J, Schell J (1987) Genes for the catabolism and synthesis of an opine-like compound in Rhizobium meliloti are closely linked and on the Sym plasmid. Proc Natl Acad Sci USA 84:493–497

    Google Scholar 

  • Rossbach S, Schell J, de Bruijn FJ (1987) The ntrC gene of Agrobacterium tumefaciens C58 controls glutamine synthetase (GSII) activity, growth on nitrate and chromosomal but not Ti-encoded arginine catabolism pathways. Mol Gen Genet 209:419–426

    Google Scholar 

  • Rothstein SJ, Reznikoff WS (1981) The functional differences in the inverted repeats of Tn5 are caused by a single base pair change. Cell 23:191–199

    Google Scholar 

  • Sancar A, Hack AM, Rupp WD (1979) Simple method for identification of plasmid-coded proteins. J Bacteriol 137:692–693

    Google Scholar 

  • Somerville JE, Kahn ML (1983) Cloning of the glutamine synthetase I gene from Rhizobium meliloti. J Bacteriol 156:168–176

    Google Scholar 

  • Tempe J, Petit A, Farrand SK (1984) Induction of cell proliferation by Agrobacterium tumefaciens and Agrobacterium rhizogenes: a parasite point of view. In: Verma DPS, Hohn T (eds) Genes involved in microbe-plant interactions. Springer, Wien New York, pp 271–286

    Google Scholar 

  • Tsuprun VL, Zograf ON, Orlova EV, Kiselev NA, Pushkin AV, Shiffelova GE, Solovieva NA, Evstigneeva ZG, Kretovich WL (1987) Electron microscopy of multiple forms of glutamine synthetase from bacteriods and the cytosol of yellow lupin root nodules. Biochim Biophys Acta 913:368–376

    Google Scholar 

  • Van Haute E, Joos H, Maes M, Warren G, Van Montagu M, Schell J (1983) Intergenic transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of the Ti-plasmids of Agrobacterium tumefaciens. EMBO J 2:411–417

    Google Scholar 

  • Whoriskey SK, Nghiem VH, Leong PM, Masson JM, Miller JH (1987) Genetic rearrangements and gene amplification in Escherichia coli: DNA sequences at the junctures of amplified gene fusions. Genes Devel 1:227–237

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Saedler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossbach, S., Schell, J. & de Bruijn, F.J. Cloning and analysis of Agrobacterium tumefaciens C58 loci involved in glutamine biosynthesis: Neither the glnA (GSI) nor the glnII (GSII) gene plays a special role in virulence. Molec. Gen. Genet. 212, 38–47 (1988). https://doi.org/10.1007/BF00322442

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00322442

Key words

Navigation