Skip to main content
Log in

Expression of leucine genes from an extremely thermophilic bacterium in Escherichia coli

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The organisation of the leucine genes in Thermus thermophilus HB8 was analysed by examining the ability of recombinant DNAs to complement Escherichia coli mutations. The arrangement of the genes is different from that in the mesophilic bacteria E. coli and Salmonella typhimurium. The promoter responsible for the expression of the leuB, leuC and leuD genes of Thermus HB8 in E. coli was identified. The sequence of Thermus DNA containing this promoter revealed structural similarities to the promoter and attenuator regions of the E. coli leucine operon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelberg EA, Burns SN (1960) Genetic variation in the sex factor of Escherichia coli. J Bacteriol 79:321–330

    Google Scholar 

  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW, Crosa JH, Falkow S (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113

    Google Scholar 

  • Brendel V, Trifonov EN (1984) A computer algorithm for testing potential prokaryotic terminators. Nucleic Acids Res 12:4411–4427

    Google Scholar 

  • Calvo JM (1983) Leucine biosynthesis in prokaryotes. In: Hermann KM, Somerville RL (eds) Amino acids biosynthesis and genetic regulation. Addison-Wesley Reading, Massachusetts London Amsterdam Ontario Sydney Tokyo, pp 267–284

    Google Scholar 

  • Calvo JM, Worden HE (1970) A multisite-mutation map of the leucine operon of Salmonella typhimurium. Genetics 64:199–214

    Google Scholar 

  • Carter PW, Weiss DL, Weith HL, Calvo JM (1985) Mutations that convert the four leucine codons of the Salmonella typhimurium leu leader to four threonine codons. J Bacteriol 162:943–949

    Google Scholar 

  • Carter PW, Bartkus JM, Calvo JM (1986) Transcription attenuation in Salmonella typhimurium: The significance of rare leucine codons in the leu leader. Proc Natl Acad Sci USA 83:8127–8131

    Google Scholar 

  • Chang ACY, Cohen SN (1978) Construction and characterisation of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134:1141–1156

    Google Scholar 

  • Crawford IP (1975) Gene rearrangements in the evolution of the tryptophan synthetic pathway. Bacteriol Rev 39:87–120

    Google Scholar 

  • Daniel RM, Donnison AM, Bragger J, Morgan HW (1986) The stability of enzymes from extreme thermophiles. Proceedings of the Seventh Australian Biotechnology Conference 1986, pp 158–163

  • Davis RW, Botstein D, Roth JR (1980) Advanced bacterial genetics. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Degryse E, Glansdorff N, Pierard A (1978) A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch Microbiol 117:189–196

    Google Scholar 

  • Friedberg D, Rosenthal ER, Jones JW, Calvo JM (1985) Characterization of the 3′ end of the leucine operon of Salmonella typhimurium. Mol Gen Genet 199:486–494

    Google Scholar 

  • Fultz PN, Kemper J (1981) Wild-type isopropylmalate isomerase in Salmonella typhimurium is composed of two different subunits. J Bacteriol 148:210–219

    Google Scholar 

  • Gemmill RM, Wessler SR, Keller EB, Calvo JM (1979) leu operon of Salmonella typhimurium is controlled by an attenuation mechanism. Proc Natl Acad Sci USA 76:4941–4945

    Google Scholar 

  • Gemmill RM, Jones JW, Haughn GW, Calvo JM (1983) Transcription initiation sites of the leucine operons of Salmonella typhimurium and Escherichia coli. J Mol Biol 170:39–59

    Google Scholar 

  • Gilbert W (1976) Starting and stopping sequences of RNA polymerases. In: Losick R, Chamberlin M (eds) RNA polymerase. Cold Spring Harbor Laboratory, New York, pp 193–205

    Google Scholar 

  • Grieshaber M, Bauerle R (1972) Structure and evolution of a bifunctional enzyme of the tryptophan operon. Nature New Biol 236:232–235

    Google Scholar 

  • Hara-Yokoyama M, Yokoyama S, Watanabe T, Watanabe K, Kitzume M, Mitamura Y, Morii T, Takahashi S, Kuchino Y, Nishimura S, Miyazawa T (1986) Characteristic anticodon sequences of major tRNA species from an extreme thermophile, Thermus thermophilus HB8. FEBS Lett 202:149–152

    Google Scholar 

  • Harms E, Hsu J-H, Subrahmanyam CS, Umbarger HE (1985) Comparison of the regulatory regions of ilvGEDA operons from several enteric organisms. J Bacteriol 164:207–216

    Google Scholar 

  • Hertzberg KM, Gemmill R, Jones J, Calvo JM (1980) Cloning of an EcoRI-generated fragment of the leucine operon of Salmonella typhimurium. Gene 8:135–152

    Google Scholar 

  • Hsu J-H, Harms E, Umbarger HE (1985) Leucine regulation of the ilvGEDA operon of Serratia marcescens by attenuation is modulated by a single leucine codon. J Bacteriol 164:217–222

    Google Scholar 

  • Kagawa Y, Nojima H, Nukiwa N, Ishizuka M, Nakajima T, Yasuhara T, Tanaka T, Oshima T (1984) High guanine plus cytosine content in the third letter of codons of an extreme thermophile. J Biol Chem 259:2956–2960

    Google Scholar 

  • Karn J, Brenner S, Barnett L, Cesareni G (1980) Novel bacteriophage λ cloning vector. Proc Natl Acad Sci USA 77:5172–5176

    Google Scholar 

  • Kohlhaw GB (1983) Regulation of leucine biosynthesis in lower eukaryotes. In: Hermann KM, Somerville RL (eds) Amino acids biosynthesis and genetic regulation. Addison-Wesley, Reading Massachusetts London Amsterdam Ontario Sydney Tokyo, pp 285–299

    Google Scholar 

  • Koyama Y, Hishino T, Tomizuka N, Furukawa K (1986) Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J Bacteriol 166:338–340

    Google Scholar 

  • Kunai K, Machida M, Matsuzawa H, Ohta T (1986) Nucleotide sequence and characteristics of the gene for L-lactate dehydrogenase of Thermus caldophilus GK24 and the deduced amino-acid sequence of the enzyme. Eur J Biochem 160:433–440

    Google Scholar 

  • Lederberg EM, Cohen SN (1974) Transformation of Salmonella typhimurium by plasmid deoxyribonucleic acid. J Bacteriol 119:1072–1074

    Google Scholar 

  • Love DR, Streiff MB (1987) Molecular cloning of a β-glucosidase gene from an extremely thermophilic anaerobe in E. coli and B. subtilis. Bio/technology 5:384–387

    Google Scholar 

  • Luria SE, Burrous JN (1957) Hybridization between Escherichia coli and Shigella. J Bacteriol 74:461–476

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Margolin P (1963) Genetic fine structure of the leucine operon in Salmonella. Genetics 48:441–457

    Google Scholar 

  • McKenney K, Shimatake H, Court D, Schmeissner U, Brady C, Rosenberg M (1981) A system to study promoter and terminator signals recognized by Escherichia coli RNA polymerase. In: Chirikjian J, Papas T (eds) Gene amplification and analysis, vol 2: Structural analysis of nucleic acids. Elsevier, New York, pp 383–415

    Google Scholar 

  • Messing J (1983) New M13 vectors for cloning: Methods Enzymol 101:20–78

    Google Scholar 

  • Miozzari GF, Yanofsky C (1979) Gene fusion during the evolution of the tryptophan operon in Enterobacteriaceae. Nature 277:486–489

    Google Scholar 

  • Mulligan ME, Hawley DK, Entriken R, McClure WR (1984) Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity. Nucleic Acids Res 12:789–800

    Google Scholar 

  • Nagahari K, Koshikawa T, Sakaguchi K (1980) Cloning and expression of the leucine gene from Thermus thermophilus in Escherichia coli. Gene 10:137–145

    Google Scholar 

  • Nishiyama M, Matsubara N, Yamamoto K, iijima S, Uozumi T, Beppu T (1986) Nucleotide sequence of the malate dehydrogenase gene of Thermus flavus and its mutation directing an increase in enzyme activity. J Biol Chem 261:14178–14183

    Google Scholar 

  • Norrander J, Kempe T, Messing J (1983) Construction of improved phage M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26:101–106

    Google Scholar 

  • Oshima T (1986) The genes and genetic apparatus of extreme thermophiles. In: Brock TD (ed) Thermophiles: General, molecular and applied microbiology. Wiley, New York, pp 137–157

    Google Scholar 

  • Saito H, Miura K-I (1963) Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Shine J, Dalgarno L (1974) The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71:1342–1346

    Google Scholar 

  • Somers JM, Amzallag A, Middleton RB (1973) Genetic fine structure of the leucine operon of Escherichia coli K-12. J Bacteriol 113:1268–1272

    Google Scholar 

  • Squires CH, DeFelice M, Wessler SR, Calvo JM (1981) Physical characterization of the ilvHI operon of Escherichia coli K-12. J Bacteriol 147:797–804

    Google Scholar 

  • Tanaka T, Kawano N, Oshima T (1981) Cloning of the 3-isopropylmalate dehydrogenase gene of an extreme thermophile and partial purification of the gene product. J Biochem (Tokyo) 89:677–682

    Google Scholar 

  • Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268

    Google Scholar 

  • Wessler SR, Calvo JM (1981) Control of leu operon expression in Escherichia coli by a transcription attenuation mechanism. J Mol Biol 149:579–597

    Google Scholar 

  • Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Takanami

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croft, J.E., Love, D.R. & Bergquist, P.L. Expression of leucine genes from an extremely thermophilic bacterium in Escherichia coli . Mol Gen Genet 210, 490–497 (1987). https://doi.org/10.1007/BF00327202

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00327202

Key words

Navigation