Skip to main content
Log in

The ntrC gene of Agrobacterium tumefaciens C58 controls glutamine synthetase (GSII) activity, growth on nitrate and chromosomal but not Ti-encoded arginine catabolism pathways

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The ntrC locus of Agrobacterium tumefaciens C58 has been cloned using the Azorhizobium sesbaniae ORSS571 ntrC gene as a DNA hybridization probe. Transposon Tn5 mutagenesis of the cloned ntrC locus was carried out and one Tn5 insertion within the region of highest DNA homology with A. sesbaniae ORS571 ntrC was used for gene replacement of the wild-type C58 ntrC gene. The A. tumefaciens ntrC::Tn5 mutant was found to be unable to grow on nitrate as sole nitrogen (N) source, to lack glutamine synthetase (GSII) activity and to be unable to use arginine (or ornithine) as sole N source, unless the Ti-encoded arginine catabolism pathway was induced with small amounts of nopaline. Thus the A. tumefaciens ntrC regulatory gene is essential for (transcriptional) activation of the GSII and nitrate reductase genes, as well as for the chromosomal but not the Ti-borne arginine catabolism pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams TH, Chelm BK (1984) The nifH and nifDK promoter regions from Rhizobium japonicum share structural homologies with each other and with nitrogen-related promoters from other organisms. J Mol Appl Genet 2: 392–404

    Google Scholar 

  • Ausubel FM (1984) Regulation of nitrogen fixation genes. Cell 37: 5–6

    Google Scholar 

  • Ausubel FM, Buikema WJ, Earl CD, Klingensmith JA, Nixon BT, Szeto WW (1985) Organization and regulation of Rhizobium meliloti and Parasponia Bradyrhizobium nitrogen fixation genes. In: Evans HJ, Bottomley PJ, Newton WE (eds) Nitrogen fixation research progress. Martinus Nijhoff Puplishers, Dordrecht Boston Lancaster, pp 165–171

    Google Scholar 

  • Backman K, Chen YM, Magasanik B (1981) Physical characterization of the glnA-glnG region of the Escherichia coli chromosome. Proc Natl Acad Sci USA 78: 3743–3747

    Google Scholar 

  • Bender RA, Jansen KA, Resnick AD, Blumenberg M, Foor F, Magasanik B (1977) Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. J Bacteriol 129: 1001–1009

    Google Scholar 

  • Beringer JE (1974) R lactor transfer in Rhizobium leguminosarum. J Gen Microbiol 84: 188–189

    Google Scholar 

  • Bomhoff G, Klappwijk PM, Kester HCM, Schilperoort RA, Hernalsteens JP, Schell J (1976) Octopine and nopaline synthesis and breakdown genetically controlled by a plasmid of Agrobacterium tumefaciens. Mol Gen Genet 145: 177–181

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal Biochem 72: 248–254

    Google Scholar 

  • Bruijn de FJ (1987) Tn5 mutagenesis to map genes. Methods Enzymol 154: 175–196

    Google Scholar 

  • Bruijn de FJ, Ausubel FM (1981) The cloning and transposon Tn5 mutagenesis of the glnA region of Klebsiella pneumoniae: identification of glnR, a gene involved in the regulation of the nif and hut operons. Mol Gen Genet 183: 289–297

    Google Scholar 

  • Bruijn de FJ, Lupski JR (1984) The use of transposon Tn5 mutagenesis in the rapid generation of correlated physical and genetic maps of DNA segments cloned into multicopy plasmids —a review. Gene 27: 131–149

    Google Scholar 

  • Bruijn de FJ, Pawlowski K, Ratet P, Hilgert U, Schell J (1987) The unusual symbiosis between the nitrogen fixing bacterium ORS571 and its host Sesbania rostrata: regulation of nitrogen fixation and assimilaton genes in the free living versus symbiotic state. In: Verma DPS, Brisson N (eds) Molecular Genetics of Plant-Microbe Interactions; Martinus Nijhoff Publishers, Dordrecht, pp 266–271

    Google Scholar 

  • Carlson TA, Chelm BK (1986) Apparent eukaryotic origin of glutamine synthetase II from the bacterium Bradyrhizobium japonicum. Nature 322: 568–570

    Google Scholar 

  • Chang ACY, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134: 1141–1156

    Google Scholar 

  • Chelm BK, Carlson TA, Adams TH (1985) Isolation, characterization and expression of Bradyrhizobium japonicum nif and glutamine synthetase genes. In: Evans HJ, Bottomley, PJ, Newton WE (eds) Nitrogen fixation research progress. Martinus Nijhoff Puplishers, Dordrecht Boston Lancaster, p 217

    Google Scholar 

  • Darrow RA, Knotts RR (1977) Two forms of glutamine synthetase in free-living root-nodule bacteria. Biochem Biophys Res Comm 78: 554–559

    Google Scholar 

  • Darrow RA, Christ D, Evans WR, Jones BL, Keister DL, Knotts RR (1981) Biochemical and physiological studies on the two glutamine synthetases of Rhizobium. In: Gibson AH, Newton WE (eds) Current Perspectives in Nitrogen Fixation, Australian Academy of Science, Canberra, pp 182–185

    Google Scholar 

  • Dessaux Y, Petit A, Tempe J, Demarez M, Legrain C, Wiame JM (1986) Arginine catabolism in Agrobacterium strains: Role of the Ti plasmid. J Bacteriol 166: 44–50

    Google Scholar 

  • Ellis JG, Kerr A, Tempe J, Petit A (1979) Arginine catabolism: a new function of both octopine and nopaline Ti plasmids of Agrobacterium. Mol Gen Genet 173: 263–269

    Google Scholar 

  • Espin G, Alvarez-Morales A, Merrick M (1981) Complementation analysis of glnA-linked mutations which affect nitrogen fixation in Klebsiella pneumonia. Mol Gen Genet 184: 213–217

    Google Scholar 

  • Farrand SK, Dessaux Y (1986) Proline biosynthesis encoded by the noc and occ loci of Agrobaterium Ti-plasmids. J Bacteriol 167: 732–734

    Google Scholar 

  • Friedman AM, Long SR, Brown SE, Buikema WJ, Ausubel FM (1982) Construction of a broad host range cloning vector and its use in the genetic analysis of mutants. Gene 18: 289–296

    Google Scholar 

  • Fuchs RL, Keister DL (1980) Identification of two glutamine synthetases in Agrobacterium. J Bacteriol 141: 996–998

    Google Scholar 

  • Gussin GN, Ronson CW, Ausubel FM (1986) Regulation of nitrogen fixation genes. Annu Rev Genet 20: 567–591

    Google Scholar 

  • Holmes B, Roberts P (1981) The classification, identification and nomenclature of Agrobacteria. J Appl Bacteriol 50: 443–467

    Google Scholar 

  • Holsters M, Silva B, Van Vliet F, Genetello C, De Block M, Dhaese P, Depicker A, Inze D, Engler G, Villarroel R, Van Montagu M, Schell J (1980) The functional organization of the nopaline A. tumefaciens plasmid pTiC58. Plasmid 3: 212–230

    Google Scholar 

  • Ish-Horowicz D, Burke JF (1981) Rapid and efficient cosmid cloning. Nucleic Acids Res 9: 2989–2998

    Google Scholar 

  • Kahn ML, Kraus J, Somerville JE (1985) A model of nutrient exchange in the Rhizobium-legume symbiosis. In: Evans HJ, Bottomley PJ, Newton WE (eds) Nitrogen fixation research progress. Martinus Nijhoff Publishers, Dordrecht Boston Lancaster, pp 193–199

    Google Scholar 

  • Koncz C, Kreuzaler F, Kalman Zs, Schell J (1984) A simple method to transfer, integrate and study expression of foreign genes, such as chicken ovalbumin and actin in plant tumors. EMBO J 3: 1029–1037

    Google Scholar 

  • Kustu SG, McFarland NG, Hui SP, Esmon B, Fero-Luzzi Ames G (1979) Nitrogen control in Salmonella: regulation by the glnR and glnF products. Proc Natl Acad Sci USA 76: 4576–4580

    Google Scholar 

  • Lie TA, Soe-Agnie IE, Muller GJL, Gökdan D (1979) Environmental control of symbiotic nitrogen fixation: limitation to and flexibility of the legume-Rhizobium system. In: Broughton WJ, John CK, Rajara JC, Lim B (eds) Proc Symp Soil Microbiol Plants Nutrition 1976. University of Malaya, Kuala Lumpur, pp 194–212

    Google Scholar 

  • Maas R (1983) An improved colony hybridization method with significantly increased sensitivity for detection of single genes. Plasmid 10: 296–298

    Google Scholar 

  • Magasanik B (1982) Genetic control of nitrogen assimilation in bacteria. Annu Rev Genet 16: 135–168

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149: 114–122

    Google Scholar 

  • Miflin BJ, Cullimore J (1984) Nitrogen assimilation in the legumerhizobium symbiosis: a joint endeavour. In: Verma DPS, Hohn TH (eds) Genes involved in microbe-plant interaction. Springer, Heidelberg Berlin Wien New York, pp 129–178

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Montoya AL, Chilton MD, Gordon MP, Sciaky D, Nester EW (1977) Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown-gall tumor cells: role of plasmid genes. J Bacteriol 129: 101–107

    Google Scholar 

  • Pahel G, Tyler B (1979) A new glnA-linked regulatory gene for glutamine synthetase in E. coli. Proc Natl Acad Sci USA 76: 4544–4548

    Google Scholar 

  • Pawlowski K, Ratet P, Schell J, de Bruijn FJ (1987) Cloning and characterization of nifA and ntrC genes of the stem nodulating bacterium ORS571: the nitrogen fixing symbiont of Sesbania rostrata: Regulation of nitrogen fixation (nif) genes in the free living versus symbiotic state. Mol Gen Genet 206: 207–219

    Google Scholar 

  • Pedrosa FO, Yates MG (1984) Regulation of nitrogen fixation (nif) genes of Azospirillum brasilense by nifA and ntr (gln) type gene products. FEMS Microbiol Lett 23: 95–101

    Google Scholar 

  • Petit A, Delhaye S, Tempe J, Morel G (1970) Recherches sur les guanidines des tissus de crown gall. Mise en evidence d'une relation specifique entre les souches d'Agrobacterium tumefaciens et les tumeurs qu'elles induisant. Physiol Veg 8: 205–215

    Google Scholar 

  • Petit A, Dessaux Y, Tempe J (1978) The biological significance of opine catabolism by Agrobacterium tumefaciens. In: Station de Pathologie Vegetale et Phytobacteriologie (ed), Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, vol 1, Institut National de la Recherche Agronomiques, Beaucouze, Angers, France, pp 143–151

  • Ruvkun GB, Ausubel FM (1981) A general method for site-directed mutagenesis in prokaryotes. Nature 289: 85–88

    Google Scholar 

  • Schardl CL, Kado CI (1983a) A functional map of the nopaline catabolism genes on the Ti plasmid of Agrobacterium tumefaciens C58. Mol Gen Genet 191: 10–16

    Google Scholar 

  • Schardl CL, Kado CI (1983b) Ti-plasmid and chromosomal ornithine catabolismus genes of Agrobacterium tumefaciens C58. J Bacteriol 155: 196–202

    Google Scholar 

  • Smedt De J, de Ley J (1977) Intra- and intergeneric similarities of Agrobacterium ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 27: 222–240

    Google Scholar 

  • Szeto WW, Nixon BT, Ronson CW, Ausubel FM (1987) Identification and characterization of the Rhizobium meliloti ntrC gene: R. meliloti has separate pathways for activating nitrogen fixation genes in free living versus symbiotic cells. J Bacteriol 169: 1423–1432

    Google Scholar 

  • Toukdarian A, Kennedy C (1986) Regulation of nitrogen metabolism in Azotobacter vinelandii: isolation of ntr and glnA genes and construction of ntr mutants. EMBO J 5: 399–407

    Google Scholar 

  • Van Haute E, Joos H, Maes M, Warren G, Van Montagu M, Schell J (1983) Intergenic transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of the Ti plasmids of Agrobacterium tumefaciens. EMBO J 2: 411–417

    Google Scholar 

  • White LO (1972) The taxonomy of the crown gall organism Agrobacterium tumefaciens and its relationship to Rhizobia and other Agrobacteria. J Gen Microbiol 2: 565–574

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Saedler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossbach, S., Schell, J. & de Bruijn, F.J. The ntrC gene of Agrobacterium tumefaciens C58 controls glutamine synthetase (GSII) activity, growth on nitrate and chromosomal but not Ti-encoded arginine catabolism pathways. Mol Gen Genet 209, 419–426 (1987). https://doi.org/10.1007/BF00331144

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00331144

Key words

Navigation