Skip to main content
Log in

Species-specific, symbiotic plasmid-located repeated DNA sequences in Rhizobium trifolii

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

A repeated DNA sequence has been characterized in the clover symbiont, Rhizobium trifolii. Analysis of three copies of this repeated sequence revealed that it constitutes a reiteration of the nifHDK promoter region and, in some copies, an additional reiteration of the N-terminal end of the nifH gene. This sequence, as exemplified by the nifHDK promoter region, is highly conserved within all the geographically-distinct isolates of R. trifolii examined, and is located exclusively on the Sym (symbiotic) plasmid. The R. trifolii repeated sequences (designated RtRS) were shown by DNA hybridization analysis to be specific for R. trifolii and not to hybridize to DNA of any other fastgrowing Rhizobium species examined. Based on the observed species-specificity and Sym-plasmid location of these sequences, as well as the available genetic evidence, we propose a model in which the expression of symbiotic genes is host-specifically activated via these species-specific repeated (promoter) sequences. The results presented indicate that the RtRS sequences can be used as a molecular probe for both species and strain identification and should facilitate the molecular taxonomy of Rhizobium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham J, Mascarenhas D, Fischer R, Benedik M, Campbell A, Echols H (1980) DNA sequence of regulatory region for integration gene of bacteriophage lambda. Proc Natl Acad Sci USA 77:2477–2481

    Google Scholar 

  • Adams TH, Chelm BK (1984) The nifH and nifDK promoter regions from Rhizobium japonicum share structural homologies with each other and with nitrogen-regulated promoters from other organisms. J Mol Appl Gen 2:392–405

    Google Scholar 

  • Beynon JL, Beringer JE, Johnston AWB (1980) Plasmids and host-range in Rhizobium leguminosarum and Rhizobium phaseoli. J Gen Microbiol 120:421–429

    Google Scholar 

  • Beynon J, Cannon M, Buchanan-Wollaston V, Cannon F (1983) The nif promoters of Klebsiella pneumoniae have a characteristic primary structure. Cell 34:665–671

    Google Scholar 

  • Berk AJ, Sharp PA (1978) Spliced early mRNAs of simian virus 40. Proc Natl Acad Sci USA 75:1274–1278

    Google Scholar 

  • Better M, Lewis B, Corbin D, Ditta G, Helinski DR (1983) Structural relationships among Rhizobium meliloti symbiotic promoters. Cell 35:479–485

    Google Scholar 

  • Bolivar F, Rodriguez R, Greene PJ, Betlach M, Heyneker HL, Boyer HW, Crosa J, Falkow S (1977) Construction and characterisation of new cloning vehicles II A multipurpose cloning system. Gene 2:95–113

    Google Scholar 

  • Brown SE, Ausubel FM (1984) Mutations affecting regulation of the Klebsiella pneumoniae nifH (nitrogenase reductase) promoter. J Bacterial 157:143–147

    Google Scholar 

  • Buchanan-Wollaston V, Cannon MC, Beynon JL, Cannon FC (1981a) The use of cloned nif (nitrogen fixation) DNA to investigate transcriptional regulation of nif expression in Klebsiella pneumoniae. Mol Gen Genet 184:102–106

    Google Scholar 

  • Buchanan-Wollaston V, Cannon MC, Beynon JL, Cannon FC (1981b) Role of the nifA gene product in the regulation of nif expression in Klebiella pneumoniae. Nature 294:776–778

    Google Scholar 

  • Broughton WJ, Heycke N, Heiner-Meyer ZA, Pankhurst CE (1984) Plasmid-linked nif and “nod” genes in fast-growing rhizobia that nodulate Glycine max, Phosphocarpus tetragonolobus, and Vigna unguiculata. Proc Natl Acad Sci USA 81: 3093–3097

    Google Scholar 

  • Christensen AH, Schubert KR (1983) Identification of a Rhizobium trifolii plasmid coding for nitrogen fixation and nodulation genes and its interaction with pJB5JI, a Rhizobium leguminosarum plasmid. J Bacteriol 156:592–599

    Google Scholar 

  • Dixon R, Eady RR, Espin G, Hill S, Iaccarino M, Kahn D, Merrick M (1980) Analysis of regulation of Klebsiella pneumoniae nitrogen fixation (nif) gene cluster with gene fusions. Nature 286:128–132

    Google Scholar 

  • Downie JA, Ma Q-S, Knight CD, Hombrecher G, Johnston AWB (1983) Cloning of the symbiotic region of Rhizobium leguminosarum: the nodulation genes are between the nitrogenase genes and a nifA-like gene. EMBO J 2:947–952

    Google Scholar 

  • Dreyfus B, Dommergues YR (1981) Nitrogen fixing nodules induced by Rhizobium on the stem of the tropical legume Sesbania rostrata. FEMS Microbiol Lett 10:313–317

    Google Scholar 

  • Drummond M, Clements J, Merrick M, Dixon R (1983) Positive control and autogenous regulation of the nifLA promoter in Klebsiella pneumoniae. Nature 301:302–307

    Google Scholar 

  • Fuhrmann M, Hennecke H (1984) Rhizobium japonicum nitrogenase Fe protein gene (nifH). J Bacteriol 158:1005–1011

    Google Scholar 

  • Holmes DS, Quigley M (1981) A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193–197

    Google Scholar 

  • Johnston AWB, Beringer JE (1975) Identification of Rhizobium strains in pea root nodules using genetic markers. J Gen Microbiol 87:343–350

    Google Scholar 

  • Johnston AWB, Beynon JL, Buchanan-Wollaston AV, Setchell SM, Hirsch PR, Beringer JE (1978) High frequency transfer of nodulating ability between strain and species of Rhizobium. Nature 276:634–636

    Google Scholar 

  • Kallas T, Rebiere M-C, Rippka R, de Marsac MT (1983) The structural nif genes of the Cyanobacteria Gloeothece sp. and Calothrix sp. share homology with those of Anabaena sp., but the Gloeothece genes have a different arrangement. J Bacteriol 155:427–431

    Google Scholar 

  • Kaluza K, Hennecke H (1984) Fine structure analysis of the nifDK operon encoding the and subunits of the nifDK operon encoding the and subunits of dinitrogenase from Rhizobium japonicum. Mol Gen Genet 196:35–42

    Google Scholar 

  • Kennedy C, Robson RL (1983) Activation of nif gene expression in Azotobacter by the nifA gene product of Klebsiella pseumoniae. Nature 301:626–628

    Google Scholar 

  • Keyser HH, Bohlool BB, Hu TS, Weber DF (1982) Fast-growing rhizobia isolated from root nodules of soybean. Science 215:1631–1632

    Google Scholar 

  • Kleczkowska J, Nutman PS, Bond G (1944) Note on the ability of certain strains of Rhizobium from peas and clover to infect each other's host plants. J Bacteriol 48:673–675

    Google Scholar 

  • Kleczkowska J (1950) A study of phage resistant mutants in Rhizobium trifolii. J. Gen Microbiol 4:298–310

    Google Scholar 

  • Kondorosi E, Banfalvi Z, Kondorosi A (1984) Physical and genetic analysis of a symbiotic region of Rhizobium meliloti: identification of nodulation genes. Mol Gen Genet 193:445–452

    Google Scholar 

  • Lamb JW, Hombrecher G, Johnston AWB (1982) Plasmid-determined nodulation and nitrogen-fixation abilities in Rhizobium phaseoli. Mol Gen Genet 186:449–452

    Google Scholar 

  • Lamond AI, Travers AA (1983) Requirement for an upstream element for optimal transcription of a bacterial tRNA gene. Nature 305:248–250

    Google Scholar 

  • Long SR, Buikema WJ, Ausubel FM (1982) Cloning of Rhizobium meliloti nodulation genes by direct complementation of Nod mutants. Nature 298:485–488

    Google Scholar 

  • Maxam AM, Gilbert W (1980) Sequencing end-labelled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560

    Google Scholar 

  • Meade HM, Long SR, Ruvkum GB, Brown SE, Ausubel FM (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149:114–122

    Google Scholar 

  • Miyada CG, Soberon X, Itakura K, Wilcox G (1982) The use of synthetic oligodeoxyribonucleotides to produce specific deletions in the ara BAD promoter of Escherichia coli B/r. Gene 17:167–177

    Google Scholar 

  • Norrander J, Kempe T, Messing J (1983) Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26:101–106

    Google Scholar 

  • Orcutt BC, Dayhoff MO, Barker WC (1982) Align, Alignment score program. National Biomedical Research Foundation. NBR Report 820501-08710

  • Ow DW, Sundaresan V, Rothstein DM, Brown SE, Ausubel FM (1983) Promoters regulated by the gln G (ntrC) and the nifA gene products share a heptameric consensus sequence in the-15 region. Proc Natl Acad Sci USA 80:2524–2528

    Google Scholar 

  • Priefer UB, Burkardt HJ, Klipp W, Puhler A (1980) ISRl: An insertion element isolated from the soil bacterium Rhizobium lupini. Cold Spring Harbor Symp Quant Biol 45:87–91

    Google Scholar 

  • Quinto C, de la Vega H, Flores M, Fernandez L, Bellado T, Soberon G, Palacios R (1982) Reiteration of nitrogen fixation gene sequences in Rhizobium phaseoli. Nature 299:724–726

    Google Scholar 

  • Reznikoff WS, Abelson JN (1978) The lac promoter. In: Miller J, Reznikoff W (eds) The operon. Cold Spring Harbor, New York, Cold Spring Harbor Laboratory, pp 221–243

    Google Scholar 

  • Rice D, Mazur BJ, Haselkorn R (1982) Isolation and physical mapping of nitrogen fixation genes from the Cyanobacterium Anabaena 7120. J Biol Chem 257:13157–13163

    Google Scholar 

  • Riley M, Anilionis A (1978) Evolution of the bacterial genome. Ann Rev Microbiol 32:519–560

    Google Scholar 

  • Roberts GP, Brill WJ (1980) Gene-product relationships of the nif regulon of Klebsiella pneumoniae. J Bacteriol 144:210–216

    Google Scholar 

  • Robertson JG, Lyttleton P, Pankhurst CE (1981) Preinfection and infection processes in the legume-Rhizobium symbiosis. In: Gibson AH, Newton WE (eds) Current perspectives in nitrogen fixation. Australian Academy of Science, Canberra, pp 280–291

    Google Scholar 

  • Rolfe BG, Djordjevic MA, Scott KF, Hughes JE, Badenoch-Jones J, Gresshoff PM, Cen Y, Dudman WF, Zurkowski W, Shine J (1981) Analysis of the nodule forming ability of fast-growing Rhizobium strains. In: Gibson AH, Newton WE (eds) Current perspectives in nitrogen fixation. Australian Academy of Science, Canberra, pp 142–145

    Google Scholar 

  • Rosenberg M, Court D (1979) Regulatory sequences involved in the promotion and termination of RNA transcription. Ann Rev Genet 13:319–353

    Google Scholar 

  • Ruvkun GB, Ausubel FM (1980) Interspecies homology of nitrogenase genes. Proc Natl Acad Sci USA 77:191–195

    Google Scholar 

  • Ruvkun GB, Long SR, Meade HM, van den Bos RC, Ausubel FM (1982) ISRml: A Rhizobium meliloti insertion sequence that transposes preferentially into nitrogen fixation genes. J Mol Appl Genet 1:405–418

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schwinghamer EA (1962) Studies on induced variation in the Rhizobia. III. Host range modification of Rhizobium trifolii by spontaneous and radiation-induced mutation. American J Botany 49:269–277

    Google Scholar 

  • Schwinghamer EA (1964) Association between antibiotic resistance and ineffectiveness in mutant strains of Rhizobium spp. Can J Microbiol 10:221–233

    Google Scholar 

  • Schwinghamer EA (1967) Effectiveness of Rhizobium as modified by mutation for resistance to antibiotics. Antonie van Leeuwenhoek 33:121–136

    Google Scholar 

  • Schofield PR, Djordjevic MA, Rolfe BG, Shine J, Watson JM (1983) A molecular linkage map of nitrogenase and nodulation genes in Rhizobium trifolii. Mol Gen Genet 192:459–465

    Google Scholar 

  • Schofield PR, Ridge RW, Rolfe BG, Shine J, Watson JM (1984) Host-specific nodulation is encoded on a 14 kb DNA fragment in Rhizobium trifolii. Plant Mol Biol 3:3–11

    Google Scholar 

  • Scolnik PA, Haselkorn R (1984) Activation of extra copies of genes coding for nitrogenase in Rhodopseudomonas capsulata. Nature 307:289–292

    Google Scholar 

  • Scott DB, Court CB, Ronson CW, Scott KF, Watson JM, Schofield PR, Shine J (1984) Organization of nodulation and nitrogen fixation genes on a Rhizobium trifolii symbiotic plasmid. Arch Microbiol 139:151–157

    Google Scholar 

  • Scott KF, Rolfe BG, Shine J (1981) Biological nitrogen fixation: Primary structure of the Klebsiella pneumoniae nifH and nifD genes. J Mol Appl Genet 1:71–81

    Google Scholar 

  • Scott KF, Rolfe BG, Shine J (1983a) Biological nitrogen fixation: Primary structure of the Rhizobium trifolii iron protein gene. DNA 2:149–155

    Google Scholar 

  • Scott KF, Rolfe GB, Shine J (1983b) Nitrogenase structural genes are unlinked in the nonlegume symbiont Parasponia Rhizobium. DNA 2:141–148

    Google Scholar 

  • Shine J, Dalgarno L (1975) Determinant of cistron specificity in bacterial ribosomes. Nature 254:34–38

    Google Scholar 

  • Soberon X, Covarrubias L, Bolivar F (1980) Construction and characterization of new cloning vehicles IV Deletion derivatives of pBR322 and pBR325. Gene 9:287–305

    Google Scholar 

  • Sundaresan V, Jones JDG, Ow DW, Ausubel FM (1983) Klebsiella pneumoniae nif A product activates the Rhizobium meliloti nitrogenase promoter. Nature 301:728–732

    Google Scholar 

  • Szeto WW, Zimmerman JL, Sundaresan V, Ausubel FM (1984) A Rhizobium meliloti symbiotic regulatory gene. Cell 36:1035–1043

    Google Scholar 

  • Trinick MJ (1980) Relationships amongst the fast-growing rhizobia of Lablab purpureus, Leucaena leucocephala, Mimosa spp. Acacia farnesiana and Sesbania grandiflora and their affinities with other rhizobial groups. J Appl Bacteriol 49:39–53

    Google Scholar 

  • Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268

    Google Scholar 

  • Vincent JM (1974) Root-nodule symbiosis with Rhizobium. In: Quispel A (ed) The biology of nitrogen fixation. North-Holland, Amsterdam, pp 265–341

    Google Scholar 

  • Watson JM, Schofield PR, Ridge RW, Djordjevic MA, Rolfe BG, Shine J (1983) Molecular cloning and analysis of a region of the Sym plasmid of Rhizobium trifolii encoding clover nodulation function. In: Goldberg RA (ed) Plant molecular biology. AR Liss Inc, New York, pp 303–318

    Google Scholar 

  • Watson JM, Schmidt L, Willetts NS (1980) Cloning the Tra1 region of RP1. Plasmid 4:175–183

    Google Scholar 

  • Weinman JJ, Fellows FF, Gresshoff PM, Shine J, Scott KF (1984) Structural analysis of the genes encoding the molydenum-iron protein of nitrogenase in the Parasponia Rhizobium strain ANU289. Nucleic Acids Res 12:8329–8344

    Google Scholar 

  • Wilson JK (1944) Over five hundred reasons for abandoning the cross-inoculation groups of the legumes. Soil Sci 58:61–69

    Google Scholar 

  • Zimmerman JL, Szeto WW, Ausubel FM (1983) Molecular characterization of Tn5-induced symbiotic (Fix) mutants of Rhizobium meliloti. J Bacteriol 156:1025–1034

    Google Scholar 

  • Zurkowski W, Lorkiewicz Z (1978) Effective method for the isolation of non-nodulating mutants of Rhizobium trifolii. Genet Res 32:311–314

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Saedler

Dedicated to Professor Georg Melchers to celebrate his 50-year association with the journal

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, J.M., Schofield, P.R. Species-specific, symbiotic plasmid-located repeated DNA sequences in Rhizobium trifolii . Molec Gen Genet 199, 279–289 (1985). https://doi.org/10.1007/BF00330270

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00330270

Keywords

Navigation