Skip to main content
Log in

The involvement of mitochondria in carbon metabolism in cleavingXenopus embryos

  • Original Articles
  • Published:
Roux's archives of developmental biology Aims and scope Submit manuscript

Summary

The major carbon sources inXenopus oocytes and cleavage-stage embryos appear to be amino acids, which are oxidized to form pyruvate (to support the Krebs cycle) and phosphoenolpyruvate (for anabolic processes). Metabolism of various metabolites in vitro into aspartate or glutamate, and then partially into phosphoenolpyruvate, requires the presence of mitochondria, suggesting that metabolism in vivo utilizes mitochondrial enzymes. The rate limiting step in metabolism in the stage VI oocyte appears to be uptake and/or metabolism of compounds by the mitochondria; the rate of metabolism increases during maturation. During early cleavage no qualitative differences in metabolism were observed either as a function of development, or spatially along the animal/vegetal or prospective dorsal/ventral axes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes MR (1944) The metabolism of the developingRana pipiens as revealed by specific inhibitors. J Exp Zool 95:399–418

    Article  CAS  Google Scholar 

  • Barth LG (1942) Regional differences in oxygen consumption of the amphibian gastrula. Physiol Zool XV:30–48

    Google Scholar 

  • Black SD (1989) Experimental reversal of the normal dorsal-ventral timing of blastopore formation does not reverse axis polarity inXenopus laevis embryos. Dev Biol 134:376–381

    Article  PubMed  CAS  Google Scholar 

  • Brachet J (1939) Etude du métabolisme de l'oeuf de Grenouille (Rana fusca) au course du développement. Arch de Biol 50:233–267

    CAS  Google Scholar 

  • Dworkin MB, Dworkin-Rastl E (1989) Metabolic regulation during early frog development: glycogenic flux inXenopus oocytes, eggs, and embryos. Dev Biol 132:512–523

    Article  PubMed  CAS  Google Scholar 

  • Dworkin MB, Dworkin-Rastl E (1990) Regulation of carbon flux from amino acids into sugar phosphates inXenopus embryos. Dev Biol 138:177–187

    Article  PubMed  CAS  Google Scholar 

  • Eppig JJ Jr, Dumont JN (1972) Amino acid pools in developing oocytes ofXenopus laevis. Dev Biol 28: 531–536

    Article  PubMed  CAS  Google Scholar 

  • Halestrap AP, Denton RM (1974) Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by α-cyano-4-hydroxycinnamate. Biochem J 138:313–316

    PubMed  CAS  Google Scholar 

  • Jaeger L (1945) Glycogen utilization by the amphibian gastrula in relation to invagination and induction. J Cellular Comp Physiol 25:97–120

    Article  CAS  Google Scholar 

  • Kao KR, Masui Y, Elinson RP (1986) Lithium-induced respecification of pattern inXenopus laevis embryos. Nature 322:371–373

    Article  CAS  PubMed  Google Scholar 

  • Løvtrup-Rein H, Nelson L (1982) Changes in energy metabolism during the early development ofXenopus laevis. Expt Cell Biol 50:162–168

    Article  Google Scholar 

  • Salomón de Legname H (1969) Biochemical studies on the energetics ofBufo arenarum segmenting eggs. Arch Biol [Liège] 80:471–490

    Google Scholar 

  • Salomón de Legname H, Sánchez Riera AN, Sánchez SS (1975) Source of precursors for nucleotide biosynthesis inBufo arenarum segmenting eggs. Acta Embryol Exp 2:123–136

    Google Scholar 

  • Shiokawa K, Tashiro K, Atsuchi Y, Kawazoe Y (1986) Alteration of the pool of free amino acids during oogenesis, oocyte maturation and embryogenesis of Xenopus laevis andXenopus borealis. Zool Sci 3:793–799

    CAS  Google Scholar 

  • Taylor MA, Smith LD (1987) Accumulation of free amino acids in growingXenopus laevis oocytes. Dev Biol 124:287–290

    Article  PubMed  CAS  Google Scholar 

  • Thoman M, Gerhart JC (1979) Absence of dorsal-ventral differences in energy metabolism in early embryos ofXenopus laevis. Dev Biol 68:191–202

    Article  PubMed  CAS  Google Scholar 

  • Vincent J-P, Oster GF, Gerhart JC (1986) Kinematics of gray crescent formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the egg surface. Dev Biol 113: 484–500

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dworkin, M.B., Dworkin-Rastl, E. The involvement of mitochondria in carbon metabolism in cleavingXenopus embryos. Roux's Arch Dev Biol 200, 51–57 (1991). https://doi.org/10.1007/BF02457641

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02457641

Key words

Navigation