Skip to main content
Log in

Induction of amylase in mustard seedlings by phytochrome

  • Published:
Planta Aims and scope Submit manuscript

Summary

In the cotyledons of mustard seedlings (Sinapis alba L.) amylase activity can be induced by phytochrome. In the dark amylase activity remains low. Gibberellic acid (GA3) does not stimulate an increase of amylase activity in this system. Inhibitors of RNA and protein synthesis strongly inhibit the increase of amylase activity mediated by phytochrome. In gel electrophoresis amylase from mustard seedlings reveals 3 bands. The electrophoretic pattern is the same for extracts from dark-grown and from irradiated seedlings. When mustard amylases were incubated with starch the pattern of products was similar to that produced by commercially available barley β-amylase and not similar to that produced by Bacillus subtilis α-amylase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attridge, T. H., Smith, H.: A phytochrome-mediated increase in the level of phenylalanine ammonia-lyase activity in the terminal buds of Pisum sativum. Biochim. biophys. Acta (Amst.) 148, 805–807 (1967).

    Google Scholar 

  2. Bertsch, W., Mohr, H.: Die Unabhängigkeit der lichtinduzierten Anthocyansynthese von der Photosynthese. Planta (Berl.) 65, 17–26 (1965).

    Google Scholar 

  3. Bienger, I., Schopfer, P.: Die Photomodulation der Akkumulationsrate von Ascorbinsäure beim Senfkeimling (Sinapis alba L.) durch Phytochrom. Planta (Berl.) 93, 152–159 (1970).

    Google Scholar 

  4. Chrispeels, M. J., Varner, J. E.: Gibberellic acid-enhanced synthesis and release of α-amylase and ribonuclease by isolated barley aleurone layers. Plant Physiol. 42, 398–406 (1967).

    Google Scholar 

  5. Clum, H. H.: Formation of amylase in disks of bean hypocotyl. Plant. Physiol. 42, 568–572 (1967).

    Google Scholar 

  6. Davis, B. J.: Disc electrophoresis. Ann. N. Y. Acad. Sci. 121, 404–427 (1964).

    Google Scholar 

  7. Drumm, H., Möller, J., Mohr, H.: Phytochrome-mediated synthesis of α-amylase (EC 3.2.1.1.) in mustard seedlings. Naturwissenschaften 58, 97 (1971).

    Google Scholar 

  8. Durst, F., Mohr, H.: Phytochrome-mediated induction of enzyme synthesis in mustard seedlings (Sinapis alba L.). Naturwissenschaften 53, 531–532 (1966).

    Google Scholar 

  9. Filner, P., Varner, J. E.: A test for de novo synthesis of enzymes: density labeling with H2 18O of barley α-amylase induced by gibberellic acid. Proc. nat. Acad. Sci. (Wash.) 58, 1520–1526 (1967).

    Google Scholar 

  10. Galston, A. W., Davies, P. J.: Hormonal regulation in higher plants. Science 163, 1288–1297 (1969).

    Google Scholar 

  11. Gepstain, S., Ilan, I.: A promotive action of kinetin on amylase activity in cotyledons of Phaseolus vulgaris. Plant Cell Physiol. 11, 819–822 (1970).

    Google Scholar 

  12. Groat, J. I., Briggs, D. E.: Gibberellins and α-amylase formation in germinating barley. Phytochem. 8, 1615–1627 (1969)

    Google Scholar 

  13. Häcker, M.: Der Abbau von Speicherprotein und die Bildung von Plastiden in den Kotyledonen des Senfkeimlings (Sinapis alba L.) unter dem Einfluß des Phytochroms. Planta (Berl.) 76, 309–325 (1967).

    Google Scholar 

  14. Hanke, J., Hartmann, K. M., Mohr, H.: Die Wirkung von “Störlicht” auf die Blütenbildung von Sinapis alba L. Planta (Berl.) 86, 235–249 (1969).

    Google Scholar 

  15. Hartmann, K. M.: A general hypothesis to interpret high energy phenomena of photomorphogenesis on the basis of phytochrome. Photochem. Photobiol. 5, 349–366 (1966).

    Google Scholar 

  16. Hartmann, K. M.: Photoreceptor problems in photomorphogenic responses under high-energyconditions (UV-blue-far-red). In: Book of Abstracts. European Photobiology Symposium, Hvar (Jugoslavia), p. 29–32 (1967).

  17. Jacobsen, J. V., Scandalios, J. G., Varner, J. E.: Multiple forms of amylase induced by gibberellic acid in isolated barley aleurone layers. Plant Physiol. 45, 367–371 (1970).

    Google Scholar 

  18. Karow, H., Mohr, H.: Aktivitätsänderungen der Isocitritase (EC 4.1.3.1.) während der Photomorphogenese beim Senfkeimling (Sinapis alba L.). Planta (Berl.) 72, 170–186 (1967).

    Google Scholar 

  19. Lange, H., Bienger, I., Mohr, H.: Eine neue Beweisführung für die Hypothese einer differentiellen Genaktivierung durch Phytochrom 730. Planta (Berl.) 76, 359–366 (1967).

    Google Scholar 

  20. Lange, H. Shropshire, W., Mohr, H.: An analysis of phytochrome-mediated anthocyanin synthesis. Plant Physiol. (in press).

  21. Marmé, D.: Photometrische Messungen am Phytochromsystem von Senfkeimlingen (Sinapis alba L.). Planta (Berl.) 88, 43–57 (1969).

    Google Scholar 

  22. Mohr, H.: Untersuchungen zur phytochrominduzierten Photomorphogenese des Senfkeimlings (Sinapis alba L.). Z. Pflanzenphysiol. 54, 63–83 (1966).

    Google Scholar 

  23. —: Regulation der Enzymsynthese bei der höheren Pflanze. Naturwiss. Rdsch. 23, 187–195 (1970).

    Google Scholar 

  24. — Appuhn, U.: Die Steuerung des Hypocotylwachstums von Sinapis alba L. durch Licht und Gibberellinsäure. Planta (Berl.) 59, 49–67 (1962).

    Google Scholar 

  25. — Bienger, I., Lange, H.: Primary reaction of phytochrome. Nature (Lond.) 230, 56–58 (1971).

    Google Scholar 

  26. — Meyer, U., Hartmann, K.: Die Beeinflussung der Farnsporen-Keimung (Osmunda cinnamomea (L.) und O. claytoniana (L.)) über das Phytochromsystem und die Photosynthese. Planta (Berl.) 60, 483–496 (1964).

    Google Scholar 

  27. Oelze-Karow, H., Schopfer, P., Mohr, H.: Phytochrome-mediated repression of enzyme synthesis (lipoxygenase): a threshold phenomenon. Proc. nat Acad. Sci (Wash.) 65, 51–57 (1970).

    Google Scholar 

  28. Rissland, I., Dittes, L.: Personal communication.

  29. Schopfer, P., Hock, B.: Nachweis der phytochrom-induzierten de novo-Synthese von Phenylalaninammoniumlyase (PAL, E.C. 4.3.1.5.) in Keimlingen von Sinapis alba L. durch Dichtemarkierung mit Deuterium. Planta (Berl.) 96, 248–253 (1971).

    Google Scholar 

  30. Smith, H.: Phytochrome and photomorphogenesis in plants. Nature (Lond.) 227, 665–668 (1970).

    Google Scholar 

  31. Sprent, J. I.: The inability of gibberellic acid to stimulate amylase activity in pea cotyledons. Planta (Berl.) 82, 299–301 (1968).

    Google Scholar 

  32. Tanaka, Y., Ho, T., Akazawa, T.: Enzymic mechanism of starch breakdown in germinating rice seeds. III. α-amylase isoenzymes. Plant Physiol. 46, 650–654 (1970).

    Google Scholar 

  33. Van Poucke, M., Barthe, F.: Induction of glycollate oxidase activity in mustard seedlings under the influence of continuous irradiation with red and far-red light. Planta (Berl.) 94, 308–318 (1970).

    Google Scholar 

  34. Varner, J. E., Balce, L. V., Huang, R. C.: Senescence of cotyledons of germinating peas. Influence of axis tissue. Plant Physiol. 38, 89–92 (1963).

    Google Scholar 

  35. Wagner, E., Mohr, H.: Kinetic studies to interpret “high energy phenomena” of photomorphogenesis on the basis of phytochrome. Photochem. Photobiol. 5, 397–406 (1966).

    Google Scholar 

  36. Weidner, M.: Der DNS-Gehalt von Kotyledonen und Hypocotyl des Senfkeimlings (Sinapis alba L.) bei der phytochromgesteuerten Photomorphogenese. Planta (Berl.) 75, 94–98 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drumm, H., Elchinger, I., Möller, J. et al. Induction of amylase in mustard seedlings by phytochrome. Planta 99, 265–274 (1971). https://doi.org/10.1007/BF00386843

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00386843

Keywords

Navigation