Skip to main content
Log in

The NADH-dependent Fe3+-chelate reductases of tomato roots

  • Published:
Planta Aims and scope Submit manuscript

Abstract.

The NADH-dependent Fe3+-chelate reductase (NFCHR) of tomato (Lycopersicon esculentum L.) roots, a strategy I species, was investigated. The Fe3+-citrate reductase (FeCitR) assay was strongly inhibited by p-hydroxymercuribenzoic acid (PHMB); moreover, the inhibitor was found to be more specific to the FeCitR assay than to the Fe3+-EDTA reductase assay, which was catalyzed by at least another reductase of 46 kDa. After high-speed centrifugation of tomato root membranes, high FeCitR activities were detected in pellets and lower activities in supernatants. After two-phase partitioning of microsomes, FeCitR activity (91 nmol · min−1 · mg−1) was less active in the upper phase (plasma membrane) than in the lower phase (277 nmol · min−1 · mg−1). However, only the activity of the plasma-membrane-associated NFCHR (FeCitR) was significantly enhanced (2.6-fold) in iron-deficient tomato plants, whereas that of NFCHR in non-plasma-membrane rich fractions was unaffected by this treatment. The NFCHR obtained from lysophosphatidylcholine-solubilized plasma membrane was present as a 200-kDa protein complex following fast protein liquid chromatography on Superdex 200, or as a 28-kDa form following Blue Sepharose CL-6B chromatography. Both preparations were more active following iron starvation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the 28-kDa protein purified from solubilized tomato microsomes or supernatant fractions by a final Mono Q step consisted of a single band of 32 kDa. Tomato root NFCHR resembled the NFCHR of maize (a strategy II plant, P Bagnaresi and P Pupillo, 1995, J Exp Bot 46: 1497–1503) in several properties: relative molecular mass, hydrophilicity, chromatographic behaviour, sensitivity to mercurials, specificity for electron donors and acceptors (e.g. cytochrome c), and a ferricyanide reductase-to-FeCitR ratio of 2.5. Preincubation with NADH partially protected NFCHR from PHMB-induced inactivation. Our data show that strategy I and II plants seem to share similar NFCHR proteins, which appear to belong to the cytochrome b 5 reductase flavoprotein group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 6 November 1996 / Accepted: 21 January 1997

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagnaresi, P., Basso, B. & Pupillo, P. The NADH-dependent Fe3+-chelate reductases of tomato roots. Planta 202, 427–434 (1997). https://doi.org/10.1007/s004250050146

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004250050146

Navigation