Skip to main content
Log in

Structural and functional processes during water vapour uptake and desiccation in selected lichens with green algal photobionts

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Structural alterations of the photobiont and mycobiont cells of lichens have been related to CO2-gas exchange during experiments involving water vapour uptake and desiccation of liquid-water-saturated thalli. Increasing water vapour uptake of air dry lichens led to a gradual unfolding of the photobiont cells in Lobaria pulmonaria, Pseudevernia furfuracea, Ramalina maciformis and Teloschistes lacunosus as studied by low-temperature scanning electron microscopy. The data indicated that globular, probably turgid, cells and also slightly infolded or even heavily collapsed cells contributed to positive net photosynthesis, which was reached after water vapour uptake by the four species studied. During desiccation of fully water-saturated thalli of L. pulmonaria, extrathalline water films gradually evaporated before maximum values of CO2-gas exchange were measured and before photobiont cells started to shrivel. In contrast, in P. furfuracea the CO2-gas exchange maximum was reached when a considerable percentage of photobiont cells had already collapsed and while other parts of the thalli were still covered with liquid water. Further desiccation led to cavitation of the cortical cells in both species, this occurring at water contents at which net photosynthesis was still positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EF:

exoplasmic fracture face

LTSEM:

low-temperature scanning electron microscopy

NP:

net photosynthesis

PAR:

photosynthetic active radiation (400–700 nm)

PF:

plasmic fracture face

References

  • Bewley JD, Krochko JE (1982) Desiccation tolerance. In: Lange OL, Nobel PS, Osmond CB, Ziegler H, (eds) Encyclopedia of plant physiology, NS vol 12B, Physiological plant ecology II. Springer Verlag, Berlin, pp. 325–378

    Google Scholar 

  • Blum OB (1973) Water relations. In: Ahmadjian V, Hale ME (eds) The lichens. Plenum Press, New York, pp 381–400

    Google Scholar 

  • Brown DH, Rapsch S, Beckett A, Ascaso C (1987) The effect of desiccation on cell shape in the lichen Parmelia sulcata Taylor. New Phytol 105: 295–299

    Google Scholar 

  • Büdel B, Lange OL (1991) Water status of green and blue-green phycobionts in lichen thalli after hydration by water vapor uptake: do they become turgid? Bot Acta 104: 361–366

    Google Scholar 

  • Cowan IR, Lange OL, Green TGA (1992) Carbon-dioxide exchange in lichens: determination of transport and carboxylation characteristics. Planta 187: 282–294

    Google Scholar 

  • Coxson DS, Brown D, Kershaw KA (1983) The interaction between CO2 diffusion and the degree of thallus hydration in lichens: some further comments. New Phytol 93: 247–260

    Google Scholar 

  • Echlin P (1992) Low-temperature microscopy and analysis. Plenum Press, New York

    Google Scholar 

  • Farrar JF, Smith DC (1976) Ecological physiology of the lichen Hypogymnia physodes. III. The importance of the rewetting phase. New Phytol 77: 115–125

    Google Scholar 

  • Goebel Kv (1926) deEin Beitrag zur Biologie der Flechten. Ann Jardin Botan Buitenzorg 36: 1–83

    Google Scholar 

  • Green TGA, Snelgar WP, Brown DH (1981) Carbon dioxide exchange in lichens: CO2 exchange through the cyphellate lower cortex of Stica latifrons Rich. New Phytol 88: 421–426

    Google Scholar 

  • Honegger R (1986) Ultrastructural studies in lichens. II. Mycobiont and photobiont cell wall surface layers and adhering crystalline lichen products in four Parmeliaceae. New Phytol 103: 797–808

    Google Scholar 

  • Honegger R (1993) Developmental biology of lichens. New Phytol 125: 659–677

    Google Scholar 

  • Honegger R, Peter M (1994) Routes of solute translocation and the location of water in heteromerous lichens visualized with cryotechniques in light and electron microscopy. Symbiosis 16: 167–186

    Google Scholar 

  • Ingold CT (1956) A gas phase in viable spores. Nature 177: 1242–1243

    Google Scholar 

  • Jahn, HM (1984) Morphology, reproduction and water relations — a system of morphogenetic interactions in Parmelia saxatilis. Beih. Nova Hedwigia 79: 715–737

    Google Scholar 

  • Kappen L (1988) Ecophysiological relationships in different climatic regions. In: Galun M (ed) CRC handbook of lichenology, CRC Press, Boca Raton, vol 2, pp 37–100

    Google Scholar 

  • Kappen L, Lange OL, Schulze ED, Evenari M, Buschbom U (1979) Ecophysiological investigations on lichens of the Negev desert, VI. Annual course of the photosynthetic production of Ramalina maciformis (Del.) Bory. Flora 168: 85–108

    Google Scholar 

  • Kershaw KA (1985) Physiological ecology of lichens. Cambridge University Press, Cambridge

    Google Scholar 

  • Lange OL (1969) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste: I. CO2-Gaswechsel von Ramalina maciformis (Del.) Bory unter kontrollierten Bedingungen im Laboratorium. Flora 158: 324–359

    Google Scholar 

  • Lange OL, Kilian E (1985) Reaktivierung der Photosynthese trockener Flechten durch Wasserdampfaufnahme aus dem Luftraum: Artspezifisch unterschiedliches Verhalten. Flora 176: 7–23

    Google Scholar 

  • Lange OL, Tenhunen JD (1981) Moisture content and CO2 exchange of lichens: II. Depression of net photosynthesis of Ramalina maciformis at high water content is caused by increased thallus carbon dioxide diffusion resistance. Oecologia 51: 426–429

    Google Scholar 

  • Lange OL, Büdel B, Heber U, Meyer A, Zellner H, Green TGA (1993) Temperate rainforest lichens in New Zealand: High thallus water content can severely limit photosynthetic CO2 exchange. Oecologia 95: 303–313

    Google Scholar 

  • Larson DW (1981) Differential wetting in some lichens and mosses: the role of morphology. Bryologist 84: 1–15

    Google Scholar 

  • Matthes-Sears U, Nash III TH (1986) A mathematical description of the net photosynthetic response to thallus water content in the lichen Ramalina menziesii. Photosynthetica 20: 377–384

    Google Scholar 

  • Milburn JA (1970) Cavitation and osmotic potentials of Sordaria ascospores. New Phytol 69: 133–141

    Google Scholar 

  • Milburn JA (1993) Cavitation. A review: past, present and future. In: Borghetti M, Grace J, Raschi A (eds) Water transport in plants under climatic stress. University Press, Cambridge, pp 14–26

    Google Scholar 

  • Müller T, Guggenheim R, Düggelin M, Scheidegger C (1991) Freezefracturing for conventional and field emission low-temperature scanning electron microscopy: the scanning cryo unit SCU 020. J Microsc 161: 73–83

    Google Scholar 

  • Nash III TH, Reiner A, Demmig-Adams B, Kilian E, Kaiser WM, Lange OL (1990) The effect of atmospheric desiccation and osmotic water stress on photosynthesis and dark respiration of lichens. New Phytol 116: 269–276

    Google Scholar 

  • Nobel PS (1991) Physicochemical and environmental plant physiology. Academic Press, San Diego

    Google Scholar 

  • Oertli JJ (1989) The plant cell's resistance to consequences of negative turgor pressure. In: Kreeb KH, Richter H, Hinckley TM (eds) Structural and functional responses to environmental stresses. SPS Academic, The Hague, pp 73–88

    Google Scholar 

  • Oertli JJ (1993) Effect of cavitation on the status of water in plants. In: Borghetti M, Grace J, Raschi A (eds) Water transport in plants under climatic stress. University Press, Cambridge, pp 27–40

    Google Scholar 

  • Palmer RJ, Friedmann EI (1990) Water relations, thallus structure and photosynthesis in Negev Desert lichens. New Phytol 116: 597–603

    Google Scholar 

  • Pickard WF (1981) The ascent of sap in plants. Progr Biophys Mol Biol 37: 181–229

    Google Scholar 

  • Purvis OW, Coppins BJ, Hawksworth DL, James PW, Moore DM (1992) The lichen flora of Great Britain and Ireland. Natural History Museum Publ, London

    Google Scholar 

  • Renner O (1915) Theoretisches und Experimentelles zur Kohäsionstheorie der Wasserbewegung. Jahrb Wiss Bot 56: 617–667

    Google Scholar 

  • Renner O (1932) Zur Kenntnis des Wasserhaushalts javanischer Kleinepiphyten. Planta 18: 215–287

    Google Scholar 

  • Ried A (1960) Thallusbau und Assimilationshaushalt von Laub-und Krustenflechten. Biol Zentralbl 79: 129–151

    Google Scholar 

  • Rundel PW (1988) Water relations. In: Galun M (ed) CRC handbook of lichenology, vol 2, CRC Press, Boca Raton, pp 17–36

    Google Scholar 

  • Sancho LG, Kappen L (1989) Photosynthesis and water relations and the role of anatomy in Umbilicariaceae (lichenes) from Central Spain. Oecologia 81: 473–480

    Google Scholar 

  • Scheidegger C (1994) Low-temperature scanning electron microscopy: the localization of free and perturbed water and its role in the morphology of the lichen symbionts. Crypt Bot 4: 290–299

    Google Scholar 

  • Scheidegger C (1993) Mounting cryofixed specimens for low-temperature scanning electron microscopy. Eur J Cell Biol Suppl 39 (vol 61): 39

    Google Scholar 

  • Scheidegger C, Günthardt-Goerg M, Matyssek R, Hatvani P (1991) Low-temperature scanning electron microscopy of birch leaves after exposure to ozone. J Microsc 161: 85–95

    Google Scholar 

  • Schroeter B (1991) Untersuchungen zur Primärproduktion und Wasserhaushalt von Flechten der maritimen Antarktis unter besonderer Berücksichtigung von Usnea antarctica Du Rietz. Doctoral thesis, Mathematisch-Naturwissenschaftliche Fakultät der Christian Albrecht Universität Kiel, Germany

    Google Scholar 

  • Schroeter B (1994) In situ photosynthetic differentiation of the green algal and the cyanobacterial photobiont in the crustose lichen Placopsis contortuplicata. Oecologia 98: 212–220

    Google Scholar 

  • Schroeter B, Kappen L, Moldaenke C (1991a) Continuous in situ recording of the photosynthetic activity of antarctic lichens-established methods and a new approach. Lichenologist 23: 253–265

    Google Scholar 

  • Schroeter B, Jacobsen P, Kappen L (1991b) Thallus moisture and microclimatic control of CO2 exchange of Peltigera aphthosa (L.) Willd. on Disko Island (West Greenland). Symbiosis 11: 131–146

    Google Scholar 

  • Stocker O (1927) Physiologische und ökologische Untersuchungen und Laub-und Strauchflechten Flora 121: 334–415

    Google Scholar 

  • Stocker O (1956) Wasseraufnahme und Wasserspeicherung bei Thallophyten. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, vol 3: Pflanze und Wasser. Springer Verlag, Berlin, pp. 160–172

    Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Physiol Mol Biol 40: 19–38

    Google Scholar 

  • Ursprung A (1915) Über die Kohäsion des Wassers im Farnanulus. Ber Dtsch Bot Ges 33: 153–162

    Google Scholar 

  • Wirth V (1980) Flechtenflora —Ökologische Kennzeichnung und Bestimmung der Flechten Südwestdeutschlands und angrenzender Gebiete. Ulmer, Stuttgart

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Scheidegger.

Additional information

We thank D. Pichier, P. Hatvani, H. Müller, Birmensdorf, and J.B. Winkler, Kiel, for technical assistance, and J. Innes, Birmensdorf, for correcting the English text. Stimulating discussion with R. Honegger (Institut für Pflanzenbiologie, Universität Zürich, Switzerland), L. Kappen (Botanisches Institut, Universität Kiel, Germany), T.G.A. Green (Department of Biological Sciences, Hamilton, New Zealand), and O.L. Lange (Julius-von-Sachs-Institut für Biowissenschaften, Universität Würzburg, Germany) are gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheidegger, C., Schroeter, B. & Frey, B. Structural and functional processes during water vapour uptake and desiccation in selected lichens with green algal photobionts. Planta 197, 399–409 (1995). https://doi.org/10.1007/BF00202663

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202663

Key words

Navigation