Skip to main content
Log in

Stimulation by auxin of phospholipase A in membrane vesicles from an auxin-sensitive tissue is mediated by an auxin receptor

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Microsomal vesicles were prepared from zucchini (Cucurbita pepo L.) hypocotyls containing radioactive phosphatidylethanolamine or phosphatidylcholine, and these lipids were used as substrates by phospholipase A which is activated by auxins. Phospholipase D and phospholipase C hydrolysed the same substrates but were not influenced by auxin. Phospholipase A was activated by the auxins indolyl-3-acetic acid, 2,4-dichlorophenoxyacetic acid and, to a lesser extent, by α-naphthaleneacetic acid whereas the weak auxins 2,3-dichlorophenoxyacetic acid and β-naphthaleneacetic acid were almost inactive. This hormone specificity was also found in growth tests with etiolated zucchini hypocotyls. Phospholipase A activation by auxin was blocked by a polyclonal antibody against the maize auxin-binding protein. We propose that phospholipase A activation is a primary reaction in the signal transduction leading from hormone-binding to the growth response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IAA:

indolyl-3-acetic acid

2,3-D, 2,4-D:

2,3- and 2,4-dichlorophenoxyacetic acid

α-NAA; β-NAA:

α- and β-naphthaleneacetic acid

References

  • Barbier-Brygoo, H., Ephritikine, G., Klämbt, D., Ghislain, M., Guern, J. (1989) Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts. Proc. Natl. Acad. Sci. USA 86, 891–895

    Google Scholar 

  • Batt, S., Wilkins, M.B., Venis, M.A. (1976) Auxin binding to corn coleoptile membranes: kinetics and specificity. Planta 130, 7–13

    Google Scholar 

  • Berridge, M.J. (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu. Rev. Biochem. 56, 159–163

    Google Scholar 

  • Bligh, E.G., Dyer, W.J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917

    Google Scholar 

  • Brooks, R.C., McCarthy, K.D., Lapetina, E.G., Morell, P. (1989) Receptor-stimulated phospholipase A2 activation is coupled to influx of external calcium and not to mobilization of intracellular calcium in C62B glioma cells. J. Biol. Chem. 264, 20147–20153

    Google Scholar 

  • Burch, R.M., Luini, A., Axelrod J. (1986) Phospholipase A2 and phospholipase C are activated by distinct GTP-binding proteins in response to α-adrenergic stimulation of FRTL5 thyroid cells. Proc. Natl. Acad. Sci. USA 83, 7201–7205

    Google Scholar 

  • Burch, R.M., Connor, J.R., Axelrod, J. (1988) Interleukin amplifies receptor-mediated activation of phospholipase A2 in 3T3 cells. Proc. Natl. Acad. Sci. USA 85, 6306–6309

    Google Scholar 

  • Cleland, R.E (1973) Auxin-induced hydrogen ion excretion from Avena coleoptiles. Proc. Natl. Acad. Sci. USA 70, 3092–3093

    Google Scholar 

  • Ettlinger, C, Lehle, L. (1988) Auxin induces rapid changes in phosphatidylinositol metabolites. Nature 331, 176–178

    Google Scholar 

  • Exton, J.H. (1990) Signaling through phosphatidylcholine breakdown. J. Biol. Chem. 265, 1–4

    Google Scholar 

  • Evans, M.J. (1974) Rapid responses to plant hormones. Annu. Rev. Plant Physiol. 25, 195–223

    Google Scholar 

  • Gabathuler, R., Cleland, R.E. (1985) Auxin regulation of a proton translocating ATPase in pea root plasma membrane vesicles. Plant Physiol. 79, 1080–1085

    Google Scholar 

  • Hager, A., Menzel, H., Kraus, A. (1971) Versuche und Hypothese zur Primärwirkung des Auxins beim Streckungswachstum. Planta 100, 47–75

    Google Scholar 

  • Hager, A., Brich, M., Debus, G., Edel, H.G., Priester G. (1989) Membrane metabolism and growth. Phospholipases, protein kinases and exocytotic processes in coleoptiles in Zea mays. In: Plant Water Relations and Growth under Stress, pp. 275–282. Yamada Science Foundation, Osaka Tokyo

    Google Scholar 

  • Heim, S., Wagner, K.G. (1989) Inositol phosphates in the growth cycle of suspension cultured plant cells. Plant Sci. 63, 159–165

    Google Scholar 

  • Hesse, T., Feldwisch, J., Balshüsemann, D., Bauw, G., Puype, M., Vandekerkhove, J., Löbler, M., Klämbt, D., Schell, J., Palme, J. (1989) Molecular cloning and structural analysis of a gene from Zea mays (L.) coding for a putative receptor for the plant hormone auxin. EMBO J. 8, 2453–2461

    Google Scholar 

  • Inohara, N., Shimomura, S., Fukui, T., Futai, M. (1989) Auxin-binding protein located in the endoplasmic reticulum of maize shoots: molecular cloning and complete primary structure. Proc. Natl. Acad. Sci. USA 86, 3564–3568

    Google Scholar 

  • Jelsema, C.A. (1987) Light-induced changes of phospholipase A2 in rod outer segments and its modulation by GTP-binding proteins. J. Biol. Chem. 262, 163–168

    Google Scholar 

  • Kasamo, K., Yamaki, T. (1974) Effect of auxin on Mg2+-activated and inhibited ATPase from mung bean hypocotyls. Plant Cell Physiol. 52, 60–87

    Google Scholar 

  • Kutschera, U., Bergfeld, R., Schopfer, P. (1987) Cooperation of epidermis and inner tissues in auxin-mediated growth of maize coleoptiles. Planta 170, 168–180

    Google Scholar 

  • Löbler, M., Klämbt, D. (1985) Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). J. Biol. Chem. 260, 9848–9853

    Google Scholar 

  • Martiny-Baron, G., Scherer, G.F.E. (1989) Phospholipid-stimulated protein kinase in plants. J. Biol. Chem. 264, 18052–18059

    Google Scholar 

  • Morré, D.J. (1989) Stimulus-response coupling in auxin regulation of plant cell elongation. In: Second messengers in plant growth and development, pp. 81–114, Boss, W.F., Morré, D.J., eds. Alan Liss, New York

    Google Scholar 

  • Morré, D.J., Pfaffmann, H., Drobes, B., Wilkinson, F.E., Hartmann, E. E. (1989) Diacylglycerol levels unchanged during auxin-stimulated growth of excised hypocotyl segments of soybean. Plant Physiol. 90, 275–279

    Google Scholar 

  • Murayama, T., Kajiyama, Y., Nomura, Y. (1990) Histamine-stimulated and GTP-binding proteins-mediated phospholipase A2 activation in rabbit platelets. J. Biol. Chem. 265, 4290–4295

    Google Scholar 

  • Nishizuka, Y. (1986) Studies and perspectives of protein kinase C. Science 233, 305–317

    CAS  PubMed  Google Scholar 

  • Ogita, K., Miyamoto, S., Koide, H., Iwai, T., Oka, M., Ando, K., Kishimoto, A., Ikeda, K., Fukami, Y, Nishizuka, Y. (1990) Protein kinase C in Saccharomyces cerevisiae: Comparison with the mammalian enzyme. Proc. Natl. Acad. Sci. USA 87, 5011–5015

    Google Scholar 

  • Palmgren, M.G., Sommarin, M. (1989) Lysophosphatidylcholine stimulates ATP-dependent proton accumulation in isolated oat root plasma membrane vesicles. Plant Physiol. 90, 1009–1014

    Google Scholar 

  • Pelech, S.L., Vance, D.E. (1989) Signal transduction via phosphatidylcholine cycles. Trends Biochem. Sci. 14, 28–30

    Google Scholar 

  • Ray, P.M., Dohrmann, U., Hertel, R. (1977) Specificity of auxin-binding sites on maize coleoptile membranes as possible receptor sites for auxin. Plant Physiol. 60, 585–591

    Google Scholar 

  • Rozengurt, E. (1986) Early signals in the mitogenic response. Science 234, 161–166

    Google Scholar 

  • Santoni, V., Vansuyt, G., Rossignol, M. (1990) Auxin sensitivity of the plasma membrane H+-ATPase and induction to flowering. Physiol. Plant. 79, A33

    Google Scholar 

  • Schaller, G.E., Sussman M.G. (1988) Phosphorylation of the plasma membrane H+-ATPase of oat roots by calcium-stimulated protein kinase. Planta 173, 509–518

    Google Scholar 

  • Scherer, G.F.E. (1981) Auxin-stimulated ATPase in membrane fractions from pumpkin hypocotyls (Cucurbita maxima L.). Planta 151, 434–438

    Google Scholar 

  • Scherer, G.F.E. (1984) Stimulation of ATPase activity is dependent on ATP concentration. Planta 161, 394–397

    Google Scholar 

  • Scherer, G.F.E. (1985) 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor) stimulates plant H+ transport and growth. Biochem. Biophys. Res. Commun. 133, 1160–1167

    Google Scholar 

  • Scherer, G.F.E. (1990) Phospholipid-activated protein kinase in plants: coupled to phospholipase A2? In: Signal perception and transduction in higher plants, NATO-ASI Ser. H, vol. 47, pp. 69–82, Ranjeva, R., Boudet, A.M., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Scherer, G.F.E., André, B. (1989) A rapid response to a plant hormone: auxin stimulates phospholipase A2 in vivo and in vitro. Biochem. Biophys. Res. Commun. 163, 111–117

    Google Scholar 

  • Scherer, G.F.E., Morré, D.J. (1978) In vitro stimulation by 2,4-dichlorophenoxyactic acid of an ATPase and inhibition of phosphatidate phosphatase of plant membranes. Biochem. Biophys. Res. Commun. 84, 238–247

    Google Scholar 

  • Scherer, G.F.E., Nickel (1988) The animal ether phospholipid platelet-activating factor stimulates acidification of the incubation medium by cultured soybean cells. Plant Cell Rep. 7, 575–578

    Google Scholar 

  • Scherer, G.F.E., Martiny-Baron, G., Stoffel, B. (1988) A new set of regulatory molecules in plants: a plant phospholipid similar to platelet-activating factor stimulates protein kinase and proton-translocating ATPase in membrane vesicles. Planta 175, 241–253

    Google Scholar 

  • Scherer, G.F.E., André, B., Martiny-Baron, G. (1990) Hormone-activated phospholipase A2 and lysophospholipid-activated protein kinase: a new signal transduction chain and a new second messenger system in plants? Current Top. Plant Biochem. Physiol. 9, 190–218

    Google Scholar 

  • Serrano, R., Montesinos, C., Sanchez, J. (1988) Lipid requirements of the plasma membrane ATPase from oat roots and yeast. Plant Sci. 56, 117–122

    Google Scholar 

  • Shou-Peng, L., Jin-Shan, L. (1983) Regulation of potassium uptake in etiolated sunflower hypocotyl segments by indole-3-acetic acid. Acta Phytophysiol. Sin. 9, 391–402

    Google Scholar 

  • Sibley, D.R., Benovic, J.L., Caron, M.G., Lefkowitz, R.J. (1987) Regulation of transmembrane signaling by receptor phosphorylation. Cell 48, 913–922

    Google Scholar 

  • Silk, S.T., Clejan, S., Witkom, K. (1989) Evidence of GTP-binding protein regulation of phospholipase A2 activity in isolated human platelet membranes. J. Biol. Chem. 264, 21466–21469

    Google Scholar 

  • Teitelbaum, I. (1990) The epidermal growth factor receptor is coupled to a phospholipase A2-specific pertussis toxin-inhibitable guanine nucleotide-binding regulatory protein in cultured inner medullary collecting tubule cells. J. Biol. Chem. 265, 4218–4222

    Google Scholar 

  • Theologis, A. (1986) Rapid gene regulation by auxin. Annu. Rev. Plant Physiol. 37, 407–438

    Google Scholar 

  • Thimann, K.V. (1972) Hormone action in the whole life of plants. University of Massachusetts Press, Cambridge

    Google Scholar 

  • Tillmann, U., Viola, G., Kayser, B., Siemeister, G., Hesse, T., Palme, K., Löbler, M., Klämbt D. (1989) cDNA clones of the auxin-binding protein from corn coleoptiles (Zea mays L.): isolation and characterization by immunological methods. EMBO J. 8, 2463–2467

    Google Scholar 

  • Zbell, B., Walter-Back, C. (1988) Signal transduction of auxin on isolated plant cell membranes: indications for a rapid polyphosphoinositide response stimulated by indoleacetic acid. J. Plant Physiol. 133, 353–360

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Deutsche Forchungsgemeinschaft. We thank D. Klämbt (Botanical Institute, University of Bonn, FRG) for a generous gift of polyclonal antibody (IgG fraction) against auxin-binding protein and U. Kutschera (Botanical Institute, University of Bonn, FRG) for advice with the growth tests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

André, B., Scherer, G.F.E. Stimulation by auxin of phospholipase A in membrane vesicles from an auxin-sensitive tissue is mediated by an auxin receptor. Planta 185, 209–214 (1991). https://doi.org/10.1007/BF00194062

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00194062

Key words

Navigation