Skip to main content
Log in

Calmodulin and wound healing in the coenocytic green alga Ernodesmis verticillata (Kützing) Børgesen

Immunofluorescence and effects of antagonists

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The involvement of calmodulin (CaM) in wound-induced cytoplasmic contractions in E. verticillata was investigated. Indirect immunofluorescence of CaM in intact cells showed a faint, reticulate pattern of fluorescence in the cortical cytoplasm. Diffuse fluorescence was evident deeper within the cytoplasm. In contracted cells, CaM co-localizes with actin in the cortical cytoplasm in extensive, longitudinal bundles of microfilaments (MFs), and in an actin-containing reticulum. No association of CaM with tubulin was ever observed in the cortical cytoplasm at any stage of wound-healing. When contraction rates in wounded cells are measured, a lag period of 2 min is followed by a rapid, steady rate of movement over the subsequent 10 min. The delay in the initiation of longitudinal contraction corresponds to the time necessary for the assembly of the longitudinal MF bundles. Cytoplasmic motility was inhibited in a dose-dependent manner by CaM antagonists. In these inhibited cells, MF bundles did not assemble, or were poorly formed. In the latter case, CaM was always found associated with MFs. These results indicate a direct spatial and temporal correlation between CaM and actin, and a potential role for CaM in regulating the formation of functional MF bundles during wound-induced cytoplasmic contraction in Ernodesmis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CaM:

calmodulin

DMSO:

dimethyl sulfoxide

EGTA:

ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

MF(s):

microfilament(s)

MT(s):

microtubule(s)

TFP:

trifluoperazine

w-5:

N-(6-aminohexyl)-1-naphthalenesulfonamide

W-7:

N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide

References

  • Allan, E., Hepler, P.K. (1989) Calmodulin and calcium-binding proteins. In: The biochemistry of plants: a comprehensive treatise, vol. 15, pp. 455–484, Marcus, A., ed. Academic Press, San Diego

    Google Scholar 

  • Biro, R.L., Daye, S., Serlin, B.S., Terry, M.E., Datta, N., Sopory, S.K., Roux, S.J. (1984) Characterization of oat calmodulin and radioimmunoassay of its subcellular distribution. Plant Physiol. 75, 382–386

    Google Scholar 

  • Burgess, W.H., Jemiolo, D.K., Kretsinger, R.H. (1980) Interaction of calcium and calmodulin in the presence of sodium dodecyl sulfate. Biochim. Biophys. Acta 623, 257–270

    Google Scholar 

  • Burgess, W.H., Schleicher, M., Van Eldik, L.J., Watterson, D.M. (1983) Comparative studies of calmodulin. In: Calcium and cell function, vol. IV, pp. 209–261, Cheung, W.Y., ed. Academic Press, New York

    Google Scholar 

  • Cotton, G., Vanden Driessche, T. (1987) Identification of calmodulin in Acetabularia: its distribution and physiological significance. J. Cell Sci. 87, 337–347

    Google Scholar 

  • Dauwalder, M., Roux, S.J., Hardison, L. (1986) Distribution of calmodulin in pea seedlings: immunocytochemical localization in plumules and root apices. Planta 168, 461–470

    Google Scholar 

  • Dedman, J.R., Welsh, M.J., Means, A.R. (1978) Ca2+-dependent regulator: production and characterization of a monospecific antibody. J. Biol. Chem. 253, 7515–7521

    Google Scholar 

  • Gilroy, S., Blowers, D.P., Trewavas, A.J. (1987) Calcium: a regulation system emerges in plant cells. Development 100, 181–184

    Google Scholar 

  • Glenney, J.R., Jr., Weber, K. (1980) Calmodulin-binding proteins of the microfilaments present in isolated brush borders and microvilli of intestinal epithelial cells. J. Biol. Chem. 255, 10551–10554

    Google Scholar 

  • Grolig, F., Williamson, R.E., Parke, J., Miller, C., Anderton, B.H. (1988) Myosin and Ca2+-sensitive streaming in the alga Chara: detection of two polypeptides reacting with a monoclonal antimyosin and their localization in the streaming endoplasm. Eur. J. Cell Biol. 47, 22–31

    Google Scholar 

  • Hidaka, H., Asano, M., Tanaka, T. (1981) Activity-structure relationship of calmodulin antagonists: naphthalenesulfonamide derivatives. Mol. Pharmacol. 20, 571–578

    Google Scholar 

  • Kikuyama, M., Tazawa, M. (1982) Ca2+ ion reversibly inhibits the cytoplasmic streaming of Nitella. Protoplasma 113, 241–243

    Google Scholar 

  • Kohno, T., Shimmen, T. (1987) Ca2+-induced fragmentation of actin filaments in pollen tubes. Protoplasma 141, 177–179

    Google Scholar 

  • Kohno, T., Shimmen, T. (1988) Mechanism of Ca2+ inhibition of cytoplasmic streaming in lily pollen tubes. J. Cell Sci. 91, 501–509

    Google Scholar 

  • Kyhse-Anderson, J. (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J. Biochem. Biophys. Meth. 10, 203–209

    Google Scholar 

  • La Claire, J.W., II (1982) Cytomorphological aspects of wound healing in selected Siphonocladales (Chlorophyceae). J. Phycol. 18, 379–384

    Google Scholar 

  • La Claire, J.W., II (1984) Cell motility during wound healing in giant algal cells: contraction in detergent-permeabilized cell models of Ernodesmis. Eur. J. Cell Biol. 33, 180–189

    Google Scholar 

  • La Claire, J.W., II (1987) Microtubule cytoskeleton in intact and wounded coenocytic green algae. Planta 171, 30–42

    Google Scholar 

  • La Claire, J.W., II (1989) Actin cytoskeleton in intact and wounded coenocytic green algae. Planta 177, 47–57

    Google Scholar 

  • Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685

    PubMed  Google Scholar 

  • Lessard, J.L. (1988) Two monoclonal antibodies to actin: One muscle selective and one generally reactive. Cell Motil. Cytoskel. 10, 349–362

    Google Scholar 

  • Lonergan, T.A. (1985) Regulation of cell shape in Euglena gracilis. IV. Localization of actin, myosin, and calmodulin. J. Cell Sci. 77, 197–208

    Google Scholar 

  • Margolis, R.L. (1983) Calcium and microtubules. In: Calcium and cell function, vol. IV, pp. 313–335, Cheung, W.Y., ed. Academic Press, New York

    Google Scholar 

  • Marshak, D.R., Watterson, D.M., Van Eldik, L.J. (1981) Calciumdependent interaction of S100b, troponin C, and calmodulin with an immobilized phenothiazine. Proc. Natl. Acad. Sci. USA 78, 6793–6797

    Google Scholar 

  • Means, A.R., George, S.E. (1988) Calmodulin regulation of smooth-muscle myosin lightchain kinase. J. Cardiovasc. Pharmacol. 12 (Suppl. 5), S25-S29

    Google Scholar 

  • Menzel, D., Elsner-Menzel, C. (1989) Induction of actin-based cytoplasmic contraction in the siphonous green alga Acetabularia (Chlorophyceae) by locally restricted calcium influx. Bot. Acta 102, 164–171

    Google Scholar 

  • Miernyk, J.A., Fang, T.K., Randall, D.D. (1987) Calmodulin antagonists inhibit the mitochondrial pyruvate dehydrogenase complex. J. Biol. Chem. 262, 15338–15340

    Google Scholar 

  • Mische, S.M., Mooseker, M.S., Morrow, J.S. (1987) Erythrocyte adducin: a calmodulin-regulated actin-bundling protein that stimulates spectrin-actin binding. J. Cell. Biol. 105, 2837–2845

    Google Scholar 

  • Piazza, G.J. (1988) Calmodulin in plants. In: Calcium binding proteins, vol. I, pp. 127–143, Thompson, M.P., ed. CRC Press, Boca Raton, Fla., USA

    Google Scholar 

  • Piazza, G.A., Wallace, R.W. (1985) Calmodulin accelerates the rate of polymerization of human platelet actin and alters the structural characteristics of actin filaments. Proc. Natl. Acad. Sci. USA 82, 1683–1687

    Google Scholar 

  • Pritchard, K., Moody, C.J. (1986) Caldesmon: a calmodulin-binding actin-regulatory protein. Cell Calcium 7, 309–327

    Google Scholar 

  • Qiao, L., Grolig, F., Jablonsky, P.P., Williamson, R.E. (1989) Myosin heavy chains: detection by immunoblotting in higher plants and localization by immunofluorescence in the alga Chara. Cell Biol. Int. Rep. 13, 107–118

    Google Scholar 

  • Roberts, D.M., Lukas, T.J., Watterson, D.M. (1986) Structure, function, and mechanism of action of calmodulin. CRC Crit. Rev. Plant Sci. 4, 311–339

    Google Scholar 

  • Sachs, L. (1984) Applied statistics: A handbook of techniques, 2nd edn., transl, by Z. Reynarowych. Springer, New York Berlin Heidelberg

    Google Scholar 

  • SAS Institute Inc. (1985) SAS User's Guide: Statistics Version 5 Edition. SAS Institute Inc., Cary, N.C., USA

    Google Scholar 

  • Schnepf, E., Volkmann, K. (1974) Inhibition of traumatotactic movement of nuclei in Tradescantia leaf epidermis. II. Effects of heavy water, ethionine, Ca2+, and cyclic AMP. Protoplasma 81, 313–321

    Google Scholar 

  • Scott, J.A., Fischman, A.J., Khaw, B.-A., Rabito, C.A. (1988) Phenothiazine-mediated depolarization of the plasma membrane in a renal cell line. Biochem. Pharmacol. 37, 3785–3787

    Google Scholar 

  • Serlin, B.S., Roux, S.J. (1984) Modulation of chloroplast movement in the green alga Mougeotia by the Ca2+ ionophore A23187 and by calmodulin antagonists. Proc. Natl. Acad. Sci. USA 81, 6368–6372

    Google Scholar 

  • Sharpies, D. (1981) Photodecomposition of some substituted phenothiazines. J. Pharm. Pharmacol. 33, 242–243

    Google Scholar 

  • Staiger, C.J., Schliwa, M. (1987) Actin localization and function in higher plants. Protoplasma 141, 1–12

    Google Scholar 

  • Toriyama, H., Jaffe, M.J. (1972) Migration of calcium and its role in the regulation of seismonasty in the motor cell of Mimosa pudica L. Plant Physiol. 49, 72–81

    Google Scholar 

  • Towbin, H., Staehelin, T., Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354

    Google Scholar 

  • Van Eldik, L.J., Wolchok, S.R. (1984) Conditions for reproducible detection of calmodulin and S100B in immunoblots. Biochem. Biophys. Res. Commun. 124, 752–759

    Google Scholar 

  • Vantard, M., Lambert, A.-M., De Mey, J., Picquot, P., Van Eldik, L.J. (1985) Characterization and immunocytochemical distribution of calmodulin in higher plant endosperm cells: localization in the mitotic apparatus. J. Cell Biol. 101, 488–499

    Google Scholar 

  • Veigl, M.L., Vanaman, T.C., Sedwick, W.D. (1984) Calcium and calmodulin in cell growth and transformation. Biochim. Biophys. Acta 738, 21–48

    Google Scholar 

  • Wagner, G., Klein, K. (1978) Differential effect of calcium on chloroplast movement in Mougeotia. Photochem. Photobiol. 27, 137–140

    Google Scholar 

  • Wagner, G., Haupt, W., Laux, A. (1972) Reversible inhibition of chloroplast movement by cytochalasin B in the green alga Mougeotia. Science 176, 808–809

    Google Scholar 

  • Wagner, G., Valentin, P., Dieter, P., Marme, D. (1984) Identification of calmodulin in the green alga Mougeotia and its possible function in chloroplast reorientational movement. Planta 162, 62–67

    Google Scholar 

  • Wang, K., Feramisco, J.R., Ash, J.F. (1982) Fluorescent localization of contractile proteins in tissue culture cells. Methods Enzymol. 85, 514–562

    Google Scholar 

  • Wick, S.M. (1988) Immunolocalization of tubulin and calmodulin in meristematic plant cells. In: Calcium binding proteins, vol. II, pp. 21–45, Thompson, M.P., ed. CRC Press, Boca Raton, Fla., USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We are especially grateful to: Dr. J.A. West (University of California, Berkeley) for the original algal isolates; Dr. L. Van Eldik (Vanderbilt University School of Medicine) and Dr. J.L. Lessard (University of Cincinnati College of Medicine) for graciously providing CaM and actin antibodies, respectively; Dr. S.J. Roux (University of Texas, Austin) for the gift of purified oat CaM; Dr.H. Green (Smith, Kline and French Laboratories, Philadelphia, Penn., USA) for providing the trifluoperazine; and M.E.T. Scioli for assistance with the statistical analyses. Portions of this work were supported by National Science Foundation grant DCB 8402345 and U.S. Department of Agriculture grant 87-CRCR-1-2545 to J.W.L.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goddard, R.H., La Claire, J.W. Calmodulin and wound healing in the coenocytic green alga Ernodesmis verticillata (Kützing) Børgesen. Planta 183, 281–293 (1991). https://doi.org/10.1007/BF00197800

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00197800

Key words

Navigation