Skip to main content
Log in

Dinitrogenase reductase (Fe-protein) of nitrogenase in the cyanobacterial symbionts of three Azolla species: Localization and sequence of appearance during heterocyst differentiation

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Transmission electron microscopy and immunocytological labeling were used to study the distribution and ontological occurrence of dinitrogenase reductase (Fe-protein) of nitrogenase in cyanobacterial symbionts within young leaves of the water-ferns Azolla filiculoides Lamarck, A. caroliniana Willdenow, and A. pinnata R. Brown. Rabbit anti-dinitrogenase reductase antisera and goat anti-rabbit-immunoglobulin G antibody conjugated to colloidal gold were used as probes. Western blot analyses showed that a polypeptide of approx. 36 kDa (kdalton) was recognized in the symbionts of all three Azolla species and that the polyclonal sera used were monospecific. In all symbionts, nitrogenase was immunologically recognizable within heterocysts. It was absent from vegetative cells, and also from the akinetes of the A. caroliniana and A. pinnata symbionts. The differentiation of vegetative cells into heterocysts in all three symbionts was initiated by formation of additional external cell-wall layers and narrowing of the neck followed by loss of glycogen, mild vesiculation of thylakoid membranes, and the appearance of polar nodules. No nitrogenase was detected at these early stages, but it appeared in the intermediate proheterocyst stage concomitantly with the formation of contorted membranes, and reached the strongest labeling in mature heterocysts, containing extensive tightly packed membranes. Nitrogenase was evenly distributed throughout heterocysts except at the polar regions, which contained honey-comb configurations and large polar nodules. With increased age of the A. caroliniana and A. pinnata symbionts, heterocysts became highly vesiculated, with a concomitant decrease in the amount of nitrogenase detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IgG:

Immunoglobulin G

PAGE:

polyacrylamide gel electrophoresis

SDS:

sodium dodecyl sulfate

TEM:

transmission electron micrograph

References

  • Baker, D., Lending, C., Dean, D. (1984) Localization of nitrogenase using monoclonal antibodies. In: Advances in nitrogen fixation research. p. 249, Veeger, C., Newton, W.E., eds. M. Nijhoff/Dr. W. Junk Publ., The Hague, and Pudoc, Wageningen, The Netherlands

    Google Scholar 

  • Bergman, B., Lindblad, P., Pettersson, A., Renström, E., Tiberg, E. (1985) Immuno-gold localization of glutamine synthetase in a nitrogen-fixing cyanobacterium (Anabaena cylindrica). Planta 166, 329–334

    Google Scholar 

  • Bergman, B., Lindblad, P., Rai, A.N. (1986) Nitrogenase in free-living and symbiotic cyanobacteria: immunoelectron microscopic localization. FEMS Microbiol. Lett. 35, 75–78

    Google Scholar 

  • Bothe, H., Neuer, G., Kalby, I., Eisbrenner, G. (1980) Electron donors and hydrogenase in nitrogen-fixing microorganisms. In: Nitrogen fixation, pp. 83–112, Stewart, W.D.P., Gallon, J.R., eds. Academic Press, London

    Google Scholar 

  • Fleming, H., Haselkorn, R. (1974) The program of protein synthesis during heterocyst differentiation in nitrogen-fixing blue-green algae. Cell 3, 159–170

    Google Scholar 

  • Franche, C., Cohen-Bazire, G. (1987) Evolutionary divergence in the nif HDK gene region among nine symbiotic Anabaena azollae and between Anabaena azollae and some free-living heterocystous cyanobacteria. Symbiosis 3, 159–178

    Google Scholar 

  • Gallon, J.R., La Rue, T.A., Kurz, W.G.W. (1972) Characteristics of nitrogenase activity in broken cell preparations of the blue-green alga Gloeocapsa sp. LB 795. Can. J. Microbiol. 18, 327–332

    Google Scholar 

  • Golden, J.W., Robinson, S.J., Haselkorn, R. (1985) Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobacterium Anabaena. Nature 314, 419–423

    Google Scholar 

  • Haaker, H., Veeger, C. (1977) Involvement of the cytoplasmic membrane in nitrogen fixation by Azotobacter vinelandii. Eur. J. Biochem. 77, 1–10

    Google Scholar 

  • Hallenbeck, P.C. (1987) Molecular aspects of nitrogen fixation by photosynthetic prokaryotes. CRC Crit. Rev. Microbiol. 14, 1–48

    Google Scholar 

  • Hallenbeck, P.C., Kostel, P.J., Benemann, J.R. (1979) Purification and properties of nitrogenase from the cyanobacterium, Anabaena cylindrica. Eur. J. Biochem. 98, 275–284

    Google Scholar 

  • Haury, J.F., Wolk, C.P. (1978) Classes of Anabaena variabilis mutants with oxygen-sensitive nitrogenase activity. J. Bacteriol. 136, 688–692

    Google Scholar 

  • Jensen, B.B., Cox, R.P., Burris, R.H. (1986) Isolation of cyanobacterial heterocysts with high and sustained dinitrogenfixation capacity supported by endogenous reductants. Arch. Microbiol. 145, 241–247

    Google Scholar 

  • Kallas, T., Rippka, R., Coursin, T., Rebiére, M.C., Tandeau de Marrsac, N., Cohen-Bazire, G. (1983) Aerobic nitrogen fixation by non-heterocystous cyanobacteria. In: Photosynthetic procaryotes: Cell differentiation and function, pp. 281–303, Papageorgiou, C., Packer, L., eds. Elsevier Publ. Co., Limerick, Ireland

    Google Scholar 

  • Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685

    Google Scholar 

  • Lang, N.J. (1965) Electron microscopic study of heterocyst development in Anabaena azollae Strasburger. J. Phycol. 1, 127–134

    Google Scholar 

  • Lang, N.J., Fay, P. (1971) The heterocysts of blue-green algae. II. Details of ultrastructure. Proc. R. Soc. London Ser. B 178, 193–203

    Google Scholar 

  • Lumpkin, T.A., Plucknett, D.L. (1982) Azolla as a green manure: Use and management in crop production. Westview Press, Boulder, Colo., USA

    Google Scholar 

  • McCowen, S.M., MacArthur, L., Gates, J.E. (1987) Azolla fern lectins that specifically recognize endosymbiotic cyanobacteria. Curr. Microbiol. 14, 329–333

    Google Scholar 

  • Meeks, J.C., Joseph, C.M., Haselkorn, R. (1988) Organization of the nif genes in cyanobacteria in symbiotic association with Azolla and Anthoceros. Arch. Microbiol. 150, 61–71

    Google Scholar 

  • Meesters, T.M. (1987) Localization of nitrogenase in vesicles of Frankia sp. Cc1.17 by immunogold labeling on ultra thin cryosections. Arch. Microbiol. 146, 327–331

    Google Scholar 

  • Meesters, T.M., Van Vliet, W.M., Akkermans, A.D.L. (1987) Nitrogenase is restricted to the vesicles in Frankia strain EAN1pec. Physiol. Plant. 70, 267–271

    Google Scholar 

  • Murry, M.A., Hallenbeck, P.C., Beneman, J.R. (1984) Immunochemical evidence that nitrogenase is restricted to the heterocysts in Anabaena cylindrica. Arch. Microbiol. 137, 194–199

    Google Scholar 

  • Neumuller, M., Bergman, B. (1981) The ultrastructure of Anabaena azollae in Azolla pinnata. Physiol. Plant. 51, 69–76

    Google Scholar 

  • Nierzwicki-Bauer, S.A., Balkwill, D.L., Stevens, S.E., Jr. (1984) Heterocyst differentiation in the cyanobacterium Mastigocladus laminosus. J. Bacteriol. 157, 514–525

    Google Scholar 

  • Nierzwicki-Bauer, S.A., Haselkorn, R. (1986) Differences in mRNA levels in Anabaena living freely or in symbiotic association with Azolla. EMBO J. 5, 29–35

    Google Scholar 

  • Peters, G.A., Kaplan, D., Meeks, J.C., Buzby, K.M., Marsh, B.H., Corbin, J.L. (1985) Aspects of nitrogen and carbon exchange in the Azolla-Anabaena symbiosis. In: Nitrogen fixation and CO2-metabolism, pp. 213–222, Ludden, P.W., Burris, J.E., eds. Elsevier Science Publ. Co., New York

    Google Scholar 

  • Peterson, R.B., Burris, R.H. (1976) Properties of heterocysts isolated with colloidal silica. Arch. Microbiol. 108, 35–40

    Google Scholar 

  • Potts, M. (1986) The protein index of Nostoc commune UTEX 584 (cyanobacteria): changes induced in immobilized cells by water stress. Arch. Microbiol. 146, 87–95

    Google Scholar 

  • Reed, D.W., Toia, R.E., Jr., Raveed, D. (1974) Purification of azotophore membranes containing the nitrogenase from Azotobacter vinelandii. Biochem. Biophys. Res. Comm. 58, 20–26

    Google Scholar 

  • Reynolds, E.S. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212

    Google Scholar 

  • Rippka, R., Stanier, R.Y. (1978) The effects of anaerobiosis on nitrogenase synthesis and heterocyst development by Nostocacean cyanobacteria. J. Gen. Microbiol. 105, 83–94

    Google Scholar 

  • Rippka, R., Waterbury, J.B. (1977) The synthesis of nitrogenase by non-heterocystous cyanobacteria. FEMS Microbiol. Lett. 2, 83–86

    Google Scholar 

  • Robson, R.L., Eady, R.R., Richardson, T.H., Miller, R.W., Hawkins, M., Postgate, J.R. (1986) The alternative nitrogenase of Azotobacter chrococceum is a vanadium enzyme. Nature 322, 388–390

    Google Scholar 

  • Roussard-Jacquemin, M. (1983) Étude ultrastructuraie de la différentiation des heterocystes chez la cyanobacterie, Anabaena cylindrica Lemm. Can. J. Bot. 29, 1564–1575

    Google Scholar 

  • Smith, R.L., Van Baalen, C., Tabita, F.R. (1987) Alteration of the Fe protein of nitrogenase by oxygen in the cyanobacterium Anabaena sp. strain CA. J. Bacteriol. 169, 2537–2542

    Google Scholar 

  • Spence, D.W., Stewart, W.D.P. (1987) Heterocystless mutants of Anabaena PCC7120 with nitrogenase activity. FEMS Microbiol. Lett. 40, 112–119

    Google Scholar 

  • Stanier, R.Y., Kunisawa, R., Mandel, M., Cohen-Bazire, G. (1971) Purification and properties of unicellular blue-green algae (Order Chroococcaeles). Bacteriol. Rev. 35, 171–205

    Google Scholar 

  • Stewart, W.D.P., Rowell, P., Hawkesford, M., Sampaio, M.T.A.M., Ernst, A. (1982) Nitrogenase and aspects of its regulation in cyanobacteria. Isr. J. Bot. 31, 168–189

    Google Scholar 

  • Tel-Or, E., Stewart, W.D.P. (1977) Photosynthetic components and activities of nitrogen-fixing isolated heterocysts of Anabaena cylindrica. Proc. R. Soc. London Ser. B 198, 61–86

    Google Scholar 

  • Wallace, W.H., Gates, J.E. (1986) Identification of eubacteria isolated from leaf cavities of four species of the N-fixing Azolla fern as Arthrobacter Conn and Dimmick. Appl. Environ. Microbiol. 52, 425–429

    Google Scholar 

  • Watanabe, I., Espiñas, C.R., Berja, N.S., Alimaguo, B.V. (1977) The utilization of the Azolla-Anabaena complex as a nitrogen fertilizer for rice. Int. Rice Res. Paper Ser. No. 11, 1–15

  • Wilcox, M.G., Mitchison, G.J., Smith, R.J. (1973) Pattern formation in the blue-green alga Anabaena II. Controlled proheterocyst regression. J. Cell Sci. 13, 637–649

    Google Scholar 

  • Wildon, D.C., Mercer, F.V. (1963) The ultrastructure of the vegetative cell of blue-green algae. Aust. J. Biol. Sci. 16, 585–596

    Google Scholar 

  • Winkenbach, F., Wolk, C.P. (1973) Activities of enzymes of the oxidative and the reductive pentose phosphate pathways in heterocysts of a blue-green alga. Plant Physiol. 52, 480–483

    Google Scholar 

  • Wolk, C.P. (1982) Heterocysts. In: The biology of cyanobacteria, Bot. Monog. vol. 19, pp. 359–386, Carr, N.G., Whitton, B.A., eds. Blackwell Scientific Publishers, London, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun-Howland, E.B., Lindblad, P., Nierzwicki-Bauer, S.A. et al. Dinitrogenase reductase (Fe-protein) of nitrogenase in the cyanobacterial symbionts of three Azolla species: Localization and sequence of appearance during heterocyst differentiation. Planta 176, 319–322 (1988). https://doi.org/10.1007/BF00395412

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00395412

Key words

Navigation