Skip to main content
Log in

Mitochondrial development and activity of binucleate and trinucleate pollen during germination in vitro

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Bi-and trinucleate pollen generally differ in the extent of their mitochondrial development at anther dehiscence and in the rate of their attainment of maximum-phosphorylative capacity during germination in vitro, as judged from experiments with representatives of both groups.

The typically trinucleate pollen of Aster tripolium L. immediately respired at a high rate, maintaining a high energy charge. Mitochondria attained maximum electron-transducing capacity within 2 min of incubation, while tube growth started within 3 min. In contrast, the binucleate pollen of Typha latifolia L. only gradually reached a relatively low rate of respiration, concomitant with a temporary decrease in energy charge, upon immersion in the germination medium. Development of the mitochondrial, electrontransducing system occurred in about 75 min, after which the first pollen tubes emerged. Starting from a poor differentiation, mitochondria became increasingly normal in appearance as germination proceeded.

The binucleate pollen of Nicotiana alata Link et Otto and Tradescantia paludosa Anders. et Woods. showed intermediate characteristics: Nicotiana resembled Typha but mitochondria developed at a higher rate; Tradescantia germinated more rapidly and resembled the trinucleate pollen of Aster.

Inhibitors of mitochondrial or cytoplasmic protein synthesis failed to affect the development of the mitochondrial, respiratory capacities during pollen germination. It is concluded that the duration of the lag period is determined by the level and rate of mitochondrial development and not by the division of the generative cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumine

CAP:

D(-) threo chloramphenicol

CHI:

cycloheximide

DNP:

2-4 dinitrophenol

EBr:

ethidium bromide

EC:

energy charge

EGTA:

ethyleneglycol-bis (2-aminoethyl ether) N, N′-tetra-acetic acid

EM:

electron microscope

ETC:

electron transfer chain

HEPES:

N-2-hydroxyethyl piperazine N′-2-ethane sulfonic acid

LSD:

least significant difference

PVP:

polyvinyl pyrrolidone

RCR:

respiratory control ratio

RH:

relative humidity

TCA:

tricarboxylic acid

TES:

N-tris (hydroxymethyl) methyl-2-aminoethane sulfonic acid

URCI:

uncoupler respiratory control index (Hunter et al. 1976)

References

  • Atkinson, D.E.: The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7, 4030–4034 (1968)

    Google Scholar 

  • Banerji, D., Kumar, N.: Partial inhibition of the decay of Hill activity in isolated chloroplasts by kinetin. Biochem. Biophys. Res. Commun. 65, 940–944 (1975).

    Google Scholar 

  • Bar-Shalom, D., Mattsson, O.: Mode of hydration, an important factor in the germination of trinucleate pollen grains. Bot. Tidsskrift 71, 245–251 (1977)

    Google Scholar 

  • Bonner, W.D., Voss, D.O.: Some characteristics of mitochondria extracted from higher plants. Nature 191, 682–684 (1961)

    Google Scholar 

  • Brewbaker, J.L.: Pollen cytology and self-incompatibility systems in plants. J.Hered. 48, 271–277 (1957).

    Google Scholar 

  • Brewbaker, J.L.: Biology of the angiosperm pollen grain. Ind. J. Gen. Pl. Breed. 19, 121–133 (1959)

    Google Scholar 

  • Brewbaker, J.L.: The distribution and significance of binucleate and trinucleate pollen grains in the angiosperms. Am. J. Bot. 54, 1069–1083 (1967)

    Google Scholar 

  • Brewbaker, J.L., Kwack, B.H.: The essential role of calcium ion in pollen germination and pollen tube growth. Am. J. Bot. 50, 859–865 (1963)

    Google Scholar 

  • Chance, B., Williams, G.R.: The respiratory chain and oxidative phosphorylation. Adv. Enzymol. 17, 65–134 (1956)

    Google Scholar 

  • Ching, T.M., Ching, K.K.: Content of adenosine phosphates and adenylate energy charge in germinating ponderosa pine seeds. Plant Physiol. 50, 536–540 (1972)

    Google Scholar 

  • Coleman, J.O.D., Palmer, J.M.: Role of Ca2+ in the oxidation of exogenous NADH by plant mitochondria. FEBS Lett. 17, 203–208 (1971)

    Google Scholar 

  • Davison, J.A., Fynn, G.H.: The assay of ATP by the luciferin-luciferase method. Interference by a bacterial phosphatase enzyme stable to perchlorate treatment. Anal. Biochem. 58, 632–637 (1974)

    Google Scholar 

  • Day, D.A., Hanson, J.B.: Effect of phosphate and uncouplers on substrate transport and oxidation by isolated corn mitochondria. Plant Physiol. 59, 139–144 (1977)

    Google Scholar 

  • Dickinson, D.B.: Inhibition of pollen respiration by oligomycin. Nature 210, 1362–1363 (1966)

    Google Scholar 

  • Dickinson, D.B.: Permeability and respiratory properties of germinating pollen. Physiol. Plant. 20, 118–127 (1967)

    Google Scholar 

  • Dizengremel, P.: La voie d'oxydation insensible au cyanure dans les mitochondries de tranches, de pomme de terre (Solanum tuberosum L.) maintenues en survie. Physiol. Vég. 13, 39–54 (1975)

    Google Scholar 

  • Douce, R., Christensen, E.I., Bonner, W.D.: Preparation of intact plant mitochondria. Biochim. Biophys. Acta. 275, 148–160 (1972)

    Google Scholar 

  • Douce, R., Mannella, C.A., Bonner, W.D.: The external NADH dehydrogenases of intact plant mitochondria. Biochim. Biophys. Acta. 292, 105–116 (1973)

    Google Scholar 

  • Hackett, D.P.: Enzymes of terminal respiration. In: Modern methods of plant analysis, vol. VII, pp. 647–694, Linskens, H.F., Sanwal, B.D., Tracey, M.V., eds. Berlin, Göttingen, Heidelberg, Springer 1964

    Google Scholar 

  • Hanson, J.B., Hodges, T.K.: Energy-linked reactions of plant mitochondria. In: Current Topics in Bioenergetics, vol. 2, pp. 65–98, Sanadi, D.R., ed. New York, London: Academic Press 1967

    Google Scholar 

  • Heslop-Harrison, Y., Shivanna, K.R.: The receptive surface of the angiosperm stigma. Ann Bot. 41, 1233–1258 (1977)

    Google Scholar 

  • Hoekstra, F.A., Bruinsma, J.: Viability of Compositae pollen: Germination in vitro and influences of climatic conditions during dehiscence. Z. Pflanzenphysiol. 76, 36–43 (1975a)

    Google Scholar 

  • Hoekstra, F.A., Bruinsma, J.: Respiration and vitality of binucleate and trinucleate pollen. Physiol. Plant 34, 221–225 (1975b)

    Google Scholar 

  • Hoekstra, F.A., Bruinsma, J.: Reduced independence of the male gametophyte in angiosperm evolution. Ann. Bot. 42, 759–762 (1978)

    Google Scholar 

  • Hoekstra, F.A., Bruinsma, J.: In press (1979)

  • Hunter, D.R., Haworth, R.A., Southard, J.H.: Relationship between configuration, function and permeability in calciumtreated mitochondria. J. Biol. Chem. 251, 5069–5077 (1976)

    Google Scholar 

  • Ikuma, H.: Electron transport in plant respiration. Ann. Rev. Plant Physiol. 23, 419–436 (1972)

    Google Scholar 

  • Ikuma, H., Bonner, W.D.: Properties of higher plant mitochondria. I. Isolation and some characteristics of tightly-coupled mitochondria from dark-grown mung bean hypocotyls. Plant Physiol. 42, 67–75 (1967)

    Google Scholar 

  • Iwanami, Y.: Acceleration of the growth of Camellia sasanqua pollen by soaking in organic solvent. Plant Physiol. 52, 508–509 (1973)

    Google Scholar 

  • Iwanami, Y., Nakamura, N.: Storage in an organic solvent as a means for preserving viability of pollen grains. Stain Techn. 47 137–139 (1972)

    Google Scholar 

  • Jaffe, L.A., Weisenseel, M.H., Jaffe, L.F.: Calcium accumulations within the growing tips of pollen tubes. J. Cell Biol. 67, 488–492 (1975)

    Google Scholar 

  • Jesaitis, A.J., Heners, P.R., Hertel, R.: Characterization of a membrane fraction containing a b-type cytochrome. Plant Physiol. 59, 941–947 (1977)

    Google Scholar 

  • Jupijn, G.L., Desmet, G.M.: Description of the use of an E-prom memory for the automatic base line control of a single-beam spectrophotometer. Accepted for publication in J. Physics E: Sci. Instr. 1979

  • Lance, C., Bonner, W.D.: The respiratory chain components of higher plant mitochondria. Plant Physiol. 43, 756–766 (1968)

    Google Scholar 

  • Lehninger, A.L.: Biochemistry. New York: Worth Publishers 1970

    Google Scholar 

  • Luft, J.H.: Improvements in epoxy resin embedding methods. J. Biophys. Biochem. Cytol. 9, 409–414 (1961)

    Google Scholar 

  • Lundqvist, A.: Complex self-incompatibility systems in angiosperms. Proc. Roy. Soc. B. 188, 235–245 (1975)

    Google Scholar 

  • Malone, C., Koeppe, D.E., Miller, R.J.: Corn mitochondrial swelling and contraction — an alternate interpretation. Plant Physiol. 53, 918–927 (1974)

    Google Scholar 

  • Marhol, M., Cheng, K.L.: Simple ion exchange separation of magnesium from calcium and other metal ions using ethyleneglycolbis (2-aminoethylether) tetra acetic acid as a complexing agent. Anal. Chem. 42, 652–655 (1970)

    Google Scholar 

  • Maruyama, K.: Electron microscopic observation of plastids and mitochondria during pollen development in Tradescantia paludosa. Cytologia 33, 482–497 (1968)

    Google Scholar 

  • Mascarenhas, J.P.: The biochemistry of angiosperm pollen development. Bot. Rev. 41, 259–314 (1975)

    Google Scholar 

  • Mayer, A.M., Shain, Y.: Control of seed germination. Ann. Rev. Plant Physiol. 25, 167–193 (1974)

    Google Scholar 

  • Morohashi, Y., Shimokoriyama, M.: Development of glycolytic and mitochondrial activities in the early phase of germination of Phaseolus mungo seeds. J. Exp. Bot. 26, 932–938 (1975)

    Google Scholar 

  • Morohashi, Y., Shimokoriyama, M.: Water content and mitochondrial activities in the imbibitional phase of germination of Phaseolus mungo seeds. Z. Pflanzenphysiol. 82, 173–178 (1977)

    Google Scholar 

  • Nawa, Y., Asahi, T.: Relationship between the water content of pea cotyledons and mitochondrial development during the early stage of germination. Plant Cell Physiol. 14, 607–610 (1973a)

    Google Scholar 

  • Nawa, Y., Asahi, T.: Brochemical studies on development of mitochondria in pea cotyledons during the early stage of germination. Plant Physiol. 51, 833–838 (1973b)

    Google Scholar 

  • Palmer, J.M.: Rapid isolation of active mitochondria from plant tissue. Nature 216, 1208 (1967)

    Google Scholar 

  • Palmer, J.M.: The organization and regulation of electron transport in plant mitochondria. Ann. Rev. Plant Physiol. 27, 133–157 (1976)

    Google Scholar 

  • Pandey, K.K.: Evolution of gametophytic and sporophytic systems of self-incompatibility. Evolution 14, 98–115 (1960)

    Google Scholar 

  • Pfaff, E., Klingenberg M., Ritt, E., Vogell, W.: Korrelation des unspezifisch permeabelen mitochondrialen Raumes mit dem “Intermembran-Raum”. Eur. J. Biochem. 5, 222–232 (1968)

    Google Scholar 

  • Plas, L.H.W. van der, Jobse, P.A., Verleur, J.D.: Cytochrome c dependent, antimycin-A resistant respiration in mitochondria from potato tuber (Solanum tuberosum L.). Influence of wounding and storage time on outer membrane NADH-cytochrome-c-reductase. Biochim. Biophys. Acta 430, 1–12 (1976)

    Google Scholar 

  • Pomeroy, M.K.: Swelling and contraction of mitochondria from coldhardened and nonhardened wheat and rye seedlings. Plant Physiol. 57, 469–473 (1976)

    Google Scholar 

  • Pradet, A.: Étude des adénosine-5′-mono, di et tri-phosphates dans les tissus végétaux. I. Dosage enzymatique. Physiol. Vég. 5, 209–221 (1967)

    Google Scholar 

  • Reed, K.C., Bygrave, F.L.: The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochem. J. 140, 143–155 (1974)

    Google Scholar 

  • Reynolds, E.S.: The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)

    Google Scholar 

  • Sarkissian, I.V., Srivastava, H.K.: On methods of isolation of active tightly coupled mitochondria of wheat seedling. Plant Physiol. 43, 1406–1410 (1968)

    Google Scholar 

  • Sato, S., Asahi, T.: Biochemical properties of mitochondrial membrane from dry pea seeds and changes in the properties during imbibition. Plant Physiol. 56, 816–820 (1975)

    Google Scholar 

  • Southworth, D.: Lectins stimulate pollen germination. Nature 258, 600–602 (1975)

    Google Scholar 

  • St. John, J.B., Determination of ATP in chlorella with the luciferin-luciferase enzyme system. Anal. Biochem. 37, 409–416 (1970)

    Google Scholar 

  • Swedes, J.S., Sedo, R.J., Atkinson, D.E.: Relation of growth and protein synthesis to the adenylate energy charge in an adeninerequiring mutant of Escherichia coli. J. Biol. Chem. 250, 6930–6938 (1975)

    Google Scholar 

  • Van Dyke, K.: Uses of the liquid scintillation counter for measurement of bioluminescent and chemiluminescent reactions. Packard Techn. Bull. 20, 1–13 (1974)

    Google Scholar 

  • Webster, B.D., Leopold, A.C.: The ultrastructure of dry and imbibed cotyledons of soybean. Am. J. Bot. 64, 1286–1293 (1977)

    Google Scholar 

  • Wilson, S.B., Bonner, W.D.: Studies of electron transport in dry and imbibed peanut embryos. Plant Physiol. 48, 340–344 (1971)

    Google Scholar 

  • Wojtezak, L., Zaluska, H.: On the impermeability of the outer mitochondrial membrane to cytochrome c. Biochim. Biophys. Acta 193, 64–72 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoekstra, F.A. Mitochondrial development and activity of binucleate and trinucleate pollen during germination in vitro. Planta 145, 25–36 (1979). https://doi.org/10.1007/BF00379924

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379924

Key words

Navigation