Skip to main content
Log in

Stomatal responses to changes in temperature at increasing water stress

  • Published:
Planta Aims and scope Submit manuscript

Summary

The response of stomata to a gradual increase in temperature at increasing plant water stress was studied in a hot desert habitat (Negev, Israel) in the field, but under controlled temperature and humidity conditions. Four native species (Zygophyllum dumosum, Artemisia herba-alba, Hammada scoparia, Reaumuria negevensis) and one cultivated plant (Prunus armeniaca) were used in these studies. The stomatal response to temperature was compared with the response in well-irrigated plants of the same species.

At low water stress, the diffusion resistance for water vapour decreased in response to a gradual increase in temperature. Transpiration increased accordingly. This response was reversible. All species responded in the same way. The opening of stomata with increasing temperature was apparently independent of the stomatal response regulated by atmospheric humidity. At high plant water stress, the stomatal response was reversed, i.e., the stomata closed when temperature was gradually increased. This stomatal closure was also independent of the closure regulated by atmospheric humidity. The plant water potential at which the stomatal response to temperature was reversed, differed among the species investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaway, W. G., Mansfield, T. A.: Experiments and observations on the after-effect of wilting on stomata of Rumex sanguineus. Canad. J. Bot. 48, 513–521 (1970).

    Google Scholar 

  • Boyer, J. S.: Leaf water potential measured with a pressure chamber. Plant Physiol. 42, 133–137 (1967).

    Google Scholar 

  • Cram, W. J., Laties, G. G.: The use of short-term and quasi-steady influx in estimating plasmalemma and tonoplast influx in barley root cells at various external and internal chloride concentrations. Aust. J. biol. Sci. 24, 633–646 (1971).

    Google Scholar 

  • Drake, B. G., Raschke, K., Salisbury, F. B.: Temperatures and transpiration resistances of Xanthium leaves as affected by air temperature, humidity, and wind speed. Plant Physiol. 46, 324–330 (1970).

    Google Scholar 

  • Evenari, M., Shanan, L., Tadmor, N. H.: “Runoff farming” in the desert. I. Experimental layout. Agronomy J. 60, 29–32 (1968).

    Google Scholar 

  • Evenari, M., Shanan, L., Tadmor, N. H.: The Negev. The challenge of a desert. Cambridge, Mass.: Harvard Univ. Press 1971.

    Google Scholar 

  • Fischer, R. A.: After-effect of water stress on stomatal opening potential. J. exp. Bot. 21, 386–404 (1970).

    Google Scholar 

  • Fischer, R. A.: Role of potassium in stomatal opening in the leaf of Vicia faba. Plant Physiol. 47, 555–558 (1971).

    Google Scholar 

  • Fischer, R. A., Hsiao, T. C.: Stomatal opening in isolated epidermal strips of Vicia faba. II. Responses to KCl concentration and the role of potassium absorption. Plant Physiol. 43, 1953–1958 (1968).

    Google Scholar 

  • Glinka, Z., Katchansky, M. Y.: The effect of water potential on the CO2-compensation point of maize and sun flower leaf tissue. Israel J. Bot. 19, 533–541 (1970).

    Google Scholar 

  • Hammouda, M., Lange, O. L.: Zur Hitzeresistenz der Blätter höherer Pflanzen in Abhängigkeit von ihrem Wassergehalt. Naturwissenschaften 21, 500–501 (1962).

    Google Scholar 

  • Heath, O. V. S., Meidner, H.: Effects of carbon dioxide and temperature on stomata of Allium cepa L. Nature (Lond.) 180, 181–182 (1957).

    Google Scholar 

  • Heath, O. V. S., Meidner, H.: The influence of water strain on the minimum intercellular space carbon dioxide concentration and stomatal movement in wheat leaves. J. exp. Bot. 12, 226–242 (1961).

    Google Scholar 

  • Heath, O. V. S., Orchard, B.: Temperature effects on the minimum intercellular space carbon dioxide concentration “Γ”. Nature (Lond.) 180, 180–181 (1957).

    Google Scholar 

  • Hofstra, G., Hesketh, J. D.: The effect of temperature on stomatal aperture in different species. Canad. J. Bot. 47, 1307–1310 (1969).

    Google Scholar 

  • Humble, G. D., Raschke, K.: Stomatal opening quantitatively related to potassium transport. Plant Physiol. 48, 447–453 (1971).

    Google Scholar 

  • Jarvis, P. G., Slatyer, R. O.: The role of the mesophyll cell wall in leaf transpiration. Planta (Berl.) 90, 303–322 (1970).

    Google Scholar 

  • Jeschke, W. D.: Der Influx von Kaliumionen bei Blättern von Elodea densa, Abhängigkeit vom Licht, von der Kaliumkonzentration und von der Temperatur. Planta (Berl.) 91, 111–128 (1970).

    Google Scholar 

  • Jeschke, W. D., Simonis, W.: Über die Aufnahme von Phosphat- und Sulfationen durch Blätter von Elodea densa und ihre Beeinflussung durch Licht, Temperatur und Außenkonzentration. Planta (Berl.) 67, 6–32 (1965).

    Google Scholar 

  • Kappen, L.: Der Einfluß des Wassergehaltes auf die Widerstandsfähigkeit von Pflanzen gegenüber hohen und tiefen Temperaturen, untersucht an Blättern einiger Farne und von Ramonda myconi. Flora (Jena) B 156, 427–445 (1966).

    Google Scholar 

  • Kappen, L., Lange, O. L., Schulze, E.-D., Evenari, M., Buschbom, U.: Extreme water stress and photosynthetic activity of the desert plant Artemisia herbaalba. Asso Oecologia (Berl.) 10, 177–182 (1972).

    Google Scholar 

  • Klepper, B.: Diurnal pattern of water potential in woody plants. Plant Physiol. 43, 1931–1934 (1968).

    Google Scholar 

  • Koch, W., Lange, O. L., Schulze, E.-D.: Eco-physiological investigations on wild and cultivated plants in the Negev Desert. I. Methods: A mobile laboratory for measuring carbon dioxide and water vapour exchange. Oecologia (Berl.) 8, 296–309 (1971).

    Google Scholar 

  • Lange, O. L.: Untersuchungen über Wärmehaushalt und Hitzeresistenz mauretanischer Wüsten- und Savannenpflanzen. Flora (Jena) 147, 595–651 (1959).

    Google Scholar 

  • Lange, O. L., Koch, W., Schulze, E.-D.: CO2-Gaswechsel und Wasserhaushalt von Pflanzen in der Negev-Wüste am Ende der Trockenzeit. Ber. dtsch. bot. Ges. 82, 39–61 (1969).

    Google Scholar 

  • Lange, O. L., Lösch, R., Schulze, E.-D., Kappen, L.: Response of stomata to changes in humidity. Planta (Berl.) 100, 76–86 (1971).

    Google Scholar 

  • Milthorpe, F. L., Spencer, E. J. the late: Experimental studies of the factors controlling transpiration. The interrelations between transpiration rate, stomatal movement, and leaf-water content. J. exp. Bot. 8, 413–437 (1957).

    Google Scholar 

  • Pitman, M. G., Courtice, A. C., Lee, B.: Comparison of potassium and sodium uptake by barley roots at high and low salt status. Austr. J. biol. Sci. 21, 871–881 (1968).

    Google Scholar 

  • Raschke, K.: Temperature dependence of CO2 assimilation and stomatal aperture in leaf sections of Zea mays. Planta (Berl.) 91, 336–363 (1970).

    Google Scholar 

  • Raschke, K., Fellows, M. P.: Stomatal movement in Zea mays; shuttle of potassium and chloride between guard cells and subsidiary cells. Planta (Berl.) 101, 296–316 (1971).

    Google Scholar 

  • Rees, A. R.: Midday closure of stomata in the oil palm Elaeis guineensis Jacq. J. exp. Bot. 12, 129–146 (1961).

    Google Scholar 

  • Robinson, J. B.: Sulphate influx in characean cells. I. General characteristics. J. exp. Bot. 20, 201–220 (1969).

    Google Scholar 

  • Schulze, E.-D.: A new type of climatized gas exchange chamber for net photosynthesis and transpiration measurements in the field. Oecologia (Berl.) 10, 243–251 (1972).

    Google Scholar 

  • Schulze, E.-D., Lange, O. L., Buschbom, U., Kappen, L., Evenari, M.: Stomatal responses of intact growing plants to changes in humidity. Planta (Berl.) 108, 259–270 (1972a).

    Google Scholar 

  • Schulze, E.-D., Lange, O. L., Lembke, G.: A digital registration system for net photosynthesis and transpiration measurements in the field and an associated analysis of errors. Oecologia (Berl.) 10, 151–166 (1972b).

    Google Scholar 

  • Shimshi, D.: Effect of soil moisture and phenylmercuric acetate upon stomatal aperture, transpiration, and photosynthesis. Plant Physiol. 38, 713–721 (1963).

    Google Scholar 

  • Slatyer, R. P.: Plant-water relationships. London-New York: Acad. Press 1967.

    Google Scholar 

  • Stålfelt, M. G.: The effect of temperature on opening of the stomatal cells. Physiol. Plantarum 15, 772–779 (1962).

    Google Scholar 

  • Walter, H., Kreeb, K.: Die Hydratation und Hydratur des Protoplasmas der Pflanzen und ihre öko-physiologische Bedeutung. Protoplasmatologia, vol. IIC8. Wien-New York: Springer 1970.

    Google Scholar 

  • Zelitch, I.: Stomatal control. Ann. Rev. Plant Physiol. 20, 329–350 (1969).

    Google Scholar 

  • Zohary, M.: Plant life of Palestine. New York: Ronald Press 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulze, E.D., Lange, O.L., Kappen, L. et al. Stomatal responses to changes in temperature at increasing water stress. Planta 110, 29–42 (1973). https://doi.org/10.1007/BF00386920

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00386920

Keywords

Navigation